Cargando…
Land-Use Driven Changes in Soil Microbial Community Composition and Soil Fertility in the Dry-Hot Valley Region of Southwestern China
The Dry-Hot Valley is a unique geographical region in southwestern China, where steep-slope cultivation and accelerating changes in land-use have resulted in land degradation and have aggravated soil erosion, with profound impacts on soil fertility. Soil microbes play a key role in soil fertility, b...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146041/ https://www.ncbi.nlm.nih.gov/pubmed/35630401 http://dx.doi.org/10.3390/microorganisms10050956 |
_version_ | 1784716462898806784 |
---|---|
author | Liu, Taicong Chen, Zhe Rong, Li Duan, Xingwu |
author_facet | Liu, Taicong Chen, Zhe Rong, Li Duan, Xingwu |
author_sort | Liu, Taicong |
collection | PubMed |
description | The Dry-Hot Valley is a unique geographical region in southwestern China, where steep-slope cultivation and accelerating changes in land-use have resulted in land degradation and have aggravated soil erosion, with profound impacts on soil fertility. Soil microbes play a key role in soil fertility, but the impact of land-use changes on soil microbes in the Dry-Hot Valley is not well known. Here, we compared characteristics and drivers of soil microbial community composition and soil fertility in typical Dry-Hot Valley land uses of sugarcane land (SL), forest land (FL), barren land (BL) converted from former maize land (ML), and ML control. Our results showed that BL and SL had reduced soil organic carbon (SOC), total nitrogen (TN), and total potassium (TK) compared to ML and FL. This indicated that conversion of ML to SL and abandonment of ML had the potential to decrease soil fertility. We also found that fungal phyla Zoopagomycota and Blastocladiomycota were absent in SL and BL, respectively, indicating that land-use change from ML to SL decreased the diversity of the bacterial community. Redundancy analysis indicated that the relative abundance of bacterial phyla was positively correlated with TN, SOC, and available potassium (AK) content, and that fungal phyla were positively correlated with AK. Land-use indirectly affected the relative abundance of bacterial phyla through effects on soil moisture, clay, and AK contents, and that of fungal phyla through effects on clay and AK contents. In addition, land-use effects on bacteria were greater than those on fungi, indicating that bacterial communities were more sensitive to land-use changes. Management regimes that incorporate soil carbon conservation, potassium addition, and judicious irrigation are expected to benefit the stability of the plant–soil system in the Dry-Hot Valley. |
format | Online Article Text |
id | pubmed-9146041 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91460412022-05-29 Land-Use Driven Changes in Soil Microbial Community Composition and Soil Fertility in the Dry-Hot Valley Region of Southwestern China Liu, Taicong Chen, Zhe Rong, Li Duan, Xingwu Microorganisms Article The Dry-Hot Valley is a unique geographical region in southwestern China, where steep-slope cultivation and accelerating changes in land-use have resulted in land degradation and have aggravated soil erosion, with profound impacts on soil fertility. Soil microbes play a key role in soil fertility, but the impact of land-use changes on soil microbes in the Dry-Hot Valley is not well known. Here, we compared characteristics and drivers of soil microbial community composition and soil fertility in typical Dry-Hot Valley land uses of sugarcane land (SL), forest land (FL), barren land (BL) converted from former maize land (ML), and ML control. Our results showed that BL and SL had reduced soil organic carbon (SOC), total nitrogen (TN), and total potassium (TK) compared to ML and FL. This indicated that conversion of ML to SL and abandonment of ML had the potential to decrease soil fertility. We also found that fungal phyla Zoopagomycota and Blastocladiomycota were absent in SL and BL, respectively, indicating that land-use change from ML to SL decreased the diversity of the bacterial community. Redundancy analysis indicated that the relative abundance of bacterial phyla was positively correlated with TN, SOC, and available potassium (AK) content, and that fungal phyla were positively correlated with AK. Land-use indirectly affected the relative abundance of bacterial phyla through effects on soil moisture, clay, and AK contents, and that of fungal phyla through effects on clay and AK contents. In addition, land-use effects on bacteria were greater than those on fungi, indicating that bacterial communities were more sensitive to land-use changes. Management regimes that incorporate soil carbon conservation, potassium addition, and judicious irrigation are expected to benefit the stability of the plant–soil system in the Dry-Hot Valley. MDPI 2022-05-02 /pmc/articles/PMC9146041/ /pubmed/35630401 http://dx.doi.org/10.3390/microorganisms10050956 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Taicong Chen, Zhe Rong, Li Duan, Xingwu Land-Use Driven Changes in Soil Microbial Community Composition and Soil Fertility in the Dry-Hot Valley Region of Southwestern China |
title | Land-Use Driven Changes in Soil Microbial Community Composition and Soil Fertility in the Dry-Hot Valley Region of Southwestern China |
title_full | Land-Use Driven Changes in Soil Microbial Community Composition and Soil Fertility in the Dry-Hot Valley Region of Southwestern China |
title_fullStr | Land-Use Driven Changes in Soil Microbial Community Composition and Soil Fertility in the Dry-Hot Valley Region of Southwestern China |
title_full_unstemmed | Land-Use Driven Changes in Soil Microbial Community Composition and Soil Fertility in the Dry-Hot Valley Region of Southwestern China |
title_short | Land-Use Driven Changes in Soil Microbial Community Composition and Soil Fertility in the Dry-Hot Valley Region of Southwestern China |
title_sort | land-use driven changes in soil microbial community composition and soil fertility in the dry-hot valley region of southwestern china |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146041/ https://www.ncbi.nlm.nih.gov/pubmed/35630401 http://dx.doi.org/10.3390/microorganisms10050956 |
work_keys_str_mv | AT liutaicong landusedrivenchangesinsoilmicrobialcommunitycompositionandsoilfertilityinthedryhotvalleyregionofsouthwesternchina AT chenzhe landusedrivenchangesinsoilmicrobialcommunitycompositionandsoilfertilityinthedryhotvalleyregionofsouthwesternchina AT rongli landusedrivenchangesinsoilmicrobialcommunitycompositionandsoilfertilityinthedryhotvalleyregionofsouthwesternchina AT duanxingwu landusedrivenchangesinsoilmicrobialcommunitycompositionandsoilfertilityinthedryhotvalleyregionofsouthwesternchina |