Cargando…
CAEVT: Convolutional Autoencoder Meets Lightweight Vision Transformer for Hyperspectral Image Classification
Convolutional neural networks (CNNs) have been prominent in most hyperspectral image (HSI) processing applications due to their advantages in extracting local information. Despite their success, the locality of the convolutional layers within CNNs results in heavyweight models and time-consuming def...
Autores principales: | Zhang, Zhiwen, Li, Teng, Tang, Xuebin, Hu, Xiang, Peng, Yuanxi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146051/ https://www.ncbi.nlm.nih.gov/pubmed/35632310 http://dx.doi.org/10.3390/s22103902 |
Ejemplares similares
-
A Lightweight 1-D Convolution Augmented Transformer with Metric Learning for Hyperspectral Image Classification
por: Hu, Xiang, et al.
Publicado: (2021) -
Lightweight 3D Dense Autoencoder Network for Hyperspectral Remote Sensing Image Classification
por: Bai, Yang, et al.
Publicado: (2023) -
Plant Species Classification Based on Hyperspectral Imaging via a Lightweight Convolutional Neural Network Model
por: Liu, Keng-Hao, et al.
Publicado: (2022) -
Unsupervised segmentation of biomedical hyperspectral image data: tackling high dimensionality with convolutional autoencoders
por: Bench, Ciaran, et al.
Publicado: (2022) -
CCT: Lightweight compact convolutional transformer for lung disease CT image classification
por: Sun, Weiwei, et al.
Publicado: (2022)