Cargando…

Synthesise and Characterization of Cordierite and Wollastonite Glass—Ceramics Derived from Industrial Wastes and Natural Raw Materials

Industrial waste is one of the primary sources that harm the environment, and this topic has occupied many scientists on how to take advantage of these wastes or dispose of them and create a clean environment. By-pass cement dust is considered one of the most dangerous industrial wastes due to its f...

Descripción completa

Detalles Bibliográficos
Autores principales: Khater, Gamal A., El-Kheshen, Amany A., Farag, Mohammad M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146053/
https://www.ncbi.nlm.nih.gov/pubmed/35629558
http://dx.doi.org/10.3390/ma15103534
_version_ 1784716465900879872
author Khater, Gamal A.
El-Kheshen, Amany A.
Farag, Mohammad M.
author_facet Khater, Gamal A.
El-Kheshen, Amany A.
Farag, Mohammad M.
author_sort Khater, Gamal A.
collection PubMed
description Industrial waste is one of the primary sources that harm the environment, and this topic has occupied many scientists on how to take advantage of these wastes or dispose of them and create a clean environment. By-pass cement dust is considered one of the most dangerous industrial wastes due to its fine granular size and its volatilization in the air, which causes severe environmental damage to human and animal health, and this is the reason for choosing the current research point. In this article, eight samples of glass–ceramics were prepared using by-pass cement dust and natural raw materials known as silica sand, magnesite, and kaolin. Then melted by using an electric furnace which was adjusted at a range of temperatures from 1550 to 1600 °C for 2 to 3 h; the samples were cast and were subjected to heat treatment at 1000 °C for 2 h based on the DTA results in order to produce crystalline materials. Various techniques were used to study the synthesized glass–ceramic samples, including differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscope (SEM), and thermal expansion coefficient (CTE). X-ray analysis showed that the phases formed through investigated glass–ceramic samples consisted mainly of β- wollastonite, parawollastonite, diopside, anorthite, and cordierite. It was noticed that β- the wollastonite phase was formed first and then turned into parawollastonite, and also, the anorthite mineral was formed at low temperatures before the formation of the diopside mineral. SEM showed that the formed microstructure turned from a coarse grain texture to a fine-grained texture, by increasing the percentage of cordierite. It also showed that the increase in time at the endothermic temperature significantly affected the crystalline texture by giving a fine-grained crystalline texture. The linear thermal expansion measurements technique used for the studied glass–ceramic samples gives thermal expansion coefficients ranging from 6.2161 × 10(−6) to 2.6181 × 10(−6) C(−1) (in the range of 20–700 °C), and it decreased by increasing cordierite percent.
format Online
Article
Text
id pubmed-9146053
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91460532022-05-29 Synthesise and Characterization of Cordierite and Wollastonite Glass—Ceramics Derived from Industrial Wastes and Natural Raw Materials Khater, Gamal A. El-Kheshen, Amany A. Farag, Mohammad M. Materials (Basel) Article Industrial waste is one of the primary sources that harm the environment, and this topic has occupied many scientists on how to take advantage of these wastes or dispose of them and create a clean environment. By-pass cement dust is considered one of the most dangerous industrial wastes due to its fine granular size and its volatilization in the air, which causes severe environmental damage to human and animal health, and this is the reason for choosing the current research point. In this article, eight samples of glass–ceramics were prepared using by-pass cement dust and natural raw materials known as silica sand, magnesite, and kaolin. Then melted by using an electric furnace which was adjusted at a range of temperatures from 1550 to 1600 °C for 2 to 3 h; the samples were cast and were subjected to heat treatment at 1000 °C for 2 h based on the DTA results in order to produce crystalline materials. Various techniques were used to study the synthesized glass–ceramic samples, including differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscope (SEM), and thermal expansion coefficient (CTE). X-ray analysis showed that the phases formed through investigated glass–ceramic samples consisted mainly of β- wollastonite, parawollastonite, diopside, anorthite, and cordierite. It was noticed that β- the wollastonite phase was formed first and then turned into parawollastonite, and also, the anorthite mineral was formed at low temperatures before the formation of the diopside mineral. SEM showed that the formed microstructure turned from a coarse grain texture to a fine-grained texture, by increasing the percentage of cordierite. It also showed that the increase in time at the endothermic temperature significantly affected the crystalline texture by giving a fine-grained crystalline texture. The linear thermal expansion measurements technique used for the studied glass–ceramic samples gives thermal expansion coefficients ranging from 6.2161 × 10(−6) to 2.6181 × 10(−6) C(−1) (in the range of 20–700 °C), and it decreased by increasing cordierite percent. MDPI 2022-05-14 /pmc/articles/PMC9146053/ /pubmed/35629558 http://dx.doi.org/10.3390/ma15103534 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Khater, Gamal A.
El-Kheshen, Amany A.
Farag, Mohammad M.
Synthesise and Characterization of Cordierite and Wollastonite Glass—Ceramics Derived from Industrial Wastes and Natural Raw Materials
title Synthesise and Characterization of Cordierite and Wollastonite Glass—Ceramics Derived from Industrial Wastes and Natural Raw Materials
title_full Synthesise and Characterization of Cordierite and Wollastonite Glass—Ceramics Derived from Industrial Wastes and Natural Raw Materials
title_fullStr Synthesise and Characterization of Cordierite and Wollastonite Glass—Ceramics Derived from Industrial Wastes and Natural Raw Materials
title_full_unstemmed Synthesise and Characterization of Cordierite and Wollastonite Glass—Ceramics Derived from Industrial Wastes and Natural Raw Materials
title_short Synthesise and Characterization of Cordierite and Wollastonite Glass—Ceramics Derived from Industrial Wastes and Natural Raw Materials
title_sort synthesise and characterization of cordierite and wollastonite glass—ceramics derived from industrial wastes and natural raw materials
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146053/
https://www.ncbi.nlm.nih.gov/pubmed/35629558
http://dx.doi.org/10.3390/ma15103534
work_keys_str_mv AT khatergamala synthesiseandcharacterizationofcordieriteandwollastoniteglassceramicsderivedfromindustrialwastesandnaturalrawmaterials
AT elkheshenamanya synthesiseandcharacterizationofcordieriteandwollastoniteglassceramicsderivedfromindustrialwastesandnaturalrawmaterials
AT faragmohammadm synthesiseandcharacterizationofcordieriteandwollastoniteglassceramicsderivedfromindustrialwastesandnaturalrawmaterials