Cargando…

Deep Neural Networks Based on Span Association Prediction for Emotion-Cause Pair Extraction

The emotion-cause pair extraction task is a fine-grained task in text sentiment analysis, which aims to extract all emotions and their underlying causes in a document. Recent studies have addressed the emotion-cause pair extraction task in a step-by-step manner, i.e., the two subtasks of emotion ext...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Weichun, Yang, Yixue, Peng, Zhiying, Xiong, Liyan, Huang, Xiaohui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146116/
https://www.ncbi.nlm.nih.gov/pubmed/35632043
http://dx.doi.org/10.3390/s22103637
Descripción
Sumario:The emotion-cause pair extraction task is a fine-grained task in text sentiment analysis, which aims to extract all emotions and their underlying causes in a document. Recent studies have addressed the emotion-cause pair extraction task in a step-by-step manner, i.e., the two subtasks of emotion extraction and cause extraction are completed first, followed by the pairing task of emotion-cause pairs. However, this fail to deal well with the potential relationship between the two subtasks and the extraction task of emotion-cause pairs. At the same time, the grammatical information contained in the document itself is ignored. To address the above issues, we propose a deep neural network based on span association prediction for the task of emotion-cause pair extraction, exploiting general grammatical conventions to span-encode sentences. We use the span association pairing method to obtain candidate emotion-cause pairs, and establish a multi-dimensional information interaction mechanism to screen candidate emotion-cause pairs. Experimental results on a quasi-baseline corpus show that our model can accurately extract potential emotion-cause pairs and outperform existing baselines.