Cargando…
Clustering Approach for Detecting Multiple Types of Adversarial Examples
With intentional feature perturbations to a deep learning model, the adversary generates an adversarial example to deceive the deep learning model. As an adversarial example has recently been considered in the most severe problem of deep learning technology, its defense methods have been actively st...
Autores principales: | Choi, Seok-Hwan, Bahk, Tae-u, Ahn, Sungyong, Choi, Yoon-Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146128/ https://www.ncbi.nlm.nih.gov/pubmed/35632235 http://dx.doi.org/10.3390/s22103826 |
Ejemplares similares
-
Approaching Adversarial Example Classification with Chaos Theory
por: Pedraza, Anibal, et al.
Publicado: (2020) -
Minimum Adversarial Examples
por: Du, Zhenyu, et al.
Publicado: (2022) -
Robust Indoor Localization Methods Using Random Forest-Based Filter against MAC Spoofing Attack
por: Ko, DongHyun, et al.
Publicado: (2020) -
A Universal Detection Method for Adversarial Examples and Fake Images
por: Lai, Jiewei, et al.
Publicado: (2022) -
Adversarial example defense based on image reconstruction
por: Zhang, Yu(AUST), et al.
Publicado: (2021)