Cargando…
Predicting the Treatment Outcomes of Antidepressants Using a Deep Neural Network of Deep Learning in Drug-Naïve Major Depressive Patients
Predicting the treatment response to antidepressants by pretreatment features would be useful, as up to 70–90% of patients with major depressive disorder (MDD) do not respond to treatment as expected. Therefore, we aim to establish a deep neural network (DNN) model of deep learning to predict the tr...
Autores principales: | Tsai, Ping-Lin, Chang, Hui Hua, Chen, Po See |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146151/ https://www.ncbi.nlm.nih.gov/pubmed/35629117 http://dx.doi.org/10.3390/jpm12050693 |
Ejemplares similares
-
A Deep Learning Approach for Predicting Antidepressant Response in Major Depression Using Clinical and Genetic Biomarkers
por: Lin, Eugene, et al.
Publicado: (2018) -
Association between ABCB1 Polymorphisms and Antidepressant Treatment Response in Taiwanese Major Depressive Patients
por: Chang, Hui Hua, et al.
Publicado: (2015) -
Changes in the serum levels of inflammatory cytokines in antidepressant drug-naïve patients with major depression
por: Zou, Wei, et al.
Publicado: (2018) -
Neural networks and deep learning
por: Géron, Aurélien
Publicado: (2018) -
Application of deep neural network and deep reinforcement learning in wireless communication
por: Li, Ming, et al.
Publicado: (2020)