Cargando…
Power Molding Inductors Prepared Using Amorphous FeSiCrB Alloy Powder, Carbonyl Iron Powder, and Silicone Resin
In this study, amorphous FeSiCrB alloy powder, carbonyl iron powder, and high-temperature heat-resistant silicone resin were used to prepare power molding inductors, and the effects of different heat treatment procedures on the magnetic properties were investigated. Two heat treatment procedures wer...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146160/ https://www.ncbi.nlm.nih.gov/pubmed/35629704 http://dx.doi.org/10.3390/ma15103681 |
Sumario: | In this study, amorphous FeSiCrB alloy powder, carbonyl iron powder, and high-temperature heat-resistant silicone resin were used to prepare power molding inductors, and the effects of different heat treatment procedures on the magnetic properties were investigated. Two heat treatment procedures were used. Procedure 1: Amorphous FeSiCrB alloy powder was pre-heat-treated, then mixed with carbonyl iron powder and silicone resin and uniaxially pressed to prepare power inductors. Procedure 2: A mixture of amorphous FeSiCrB alloy powder, carbonyl iron powder, and silicone resin was uniaxially pressed. After dry pressing, the compacted body was heat-treated at 500 °C. Heat treatment after compaction can reduce the internal strain caused by high-pressure compaction and promote the crystallization of superparamagnetic nano-grains simultaneously. Therefore, the compacted sample after heat treatment exhibited better magnetic properties. |
---|