Cargando…
Fast Analysis of Time-Domain Fluorescence Lifetime Imaging via Extreme Learning Machine
We present a fast and accurate analytical method for fluorescence lifetime imaging microscopy (FLIM), using the extreme learning machine (ELM). We used extensive metrics to evaluate ELM and existing algorithms. First, we compared these algorithms using synthetic datasets. The results indicate that E...
Autores principales: | Zang, Zhenya, Xiao, Dong, Wang, Quan, Li, Zinuo, Xie, Wujun, Chen, Yu, Li, David Day Uei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146214/ https://www.ncbi.nlm.nih.gov/pubmed/35632167 http://dx.doi.org/10.3390/s22103758 |
Ejemplares similares
-
Simple and Robust Deep Learning Approach for Fast Fluorescence Lifetime Imaging
por: Wang, Quan, et al.
Publicado: (2022) -
Dynamic fluorescence lifetime sensing with CMOS single-photon avalanche diode arrays and deep learning processors
por: Xiao, Dong, et al.
Publicado: (2021) -
Histogram clustering for rapid time-domain fluorescence lifetime image analysis
por: Li, Yahui, et al.
Publicado: (2021) -
Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays
por: Li, David Day-Uei, et al.
Publicado: (2012) -
Fluorescence lifetime biosensing with DNA microarrays and a CMOS-SPAD
imager
por: Giraud, Gerard, et al.
Publicado: (2010)