Cargando…

Experimental Investigation on the Influence of Depth on Rockburst Characteristics in Circular Tunnels

To investigate the influence of depth on the rockburst of surrounding rock in a circular tunnel, true-triaxial tests at different depths were carried out on cubic granite specimens with a circular through-going hole. A micro camera was used to monitor the rockburst process of the circular hole sidew...

Descripción completa

Detalles Bibliográficos
Autores principales: Si, Xuefeng, Peng, Kang, Luo, Song
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146296/
https://www.ncbi.nlm.nih.gov/pubmed/35632087
http://dx.doi.org/10.3390/s22103679
Descripción
Sumario:To investigate the influence of depth on the rockburst of surrounding rock in a circular tunnel, true-triaxial tests at different depths were carried out on cubic granite specimens with a circular through-going hole. A micro camera was used to monitor the rockburst process of the circular hole sidewall in real time. The test results show that the failure process at different depths can be divided into four periods: the calm period, the particle ejection period, the rock fragment exfoliation period, and the rock bursting period. With an increase in depth, the three-dimensional unequal stress state gradually increased; the failure range and the size of rock fragments increased, the initial failure vertical stress linearly increased, and the strength and stability of the surrounding rock were enhanced. Therefore, the support range of surrounding rock should be increased as the depth increased to improve the overall stability of surrounding rock and reduce the failure range.