Cargando…

Study on Autolytic Mechanism and Self-Healing Properties of Autolytic Clinker Microsphere in Alkaline Environment

In this study, the autolytic clinker microsphere with clinker as core and polyvinyl pyrrolidone (PVP) as coating film was prepared. Pretreatment of clinker with silane coupling agent was firstly processed during the preparation. To investigate the autolytic mechanism, the microstructures of the auto...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jun, Li, Wenting, Jiang, Zhengwu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146383/
https://www.ncbi.nlm.nih.gov/pubmed/35629666
http://dx.doi.org/10.3390/ma15103638
Descripción
Sumario:In this study, the autolytic clinker microsphere with clinker as core and polyvinyl pyrrolidone (PVP) as coating film was prepared. Pretreatment of clinker with silane coupling agent was firstly processed during the preparation. To investigate the autolytic mechanism, the microstructures of the autolytic clinker microsphere at different curing ages were observed using environmental scanning electron microscopy (ESEM), equipped with an energy dispersive spectrometer (EDS). The autolytic stages were also identified based on the microstructural evolution. The influence of pretreatment degree on autolytic behavior was also studied by measurements of micro-morphology and isothermal calorimetry. Experimental results indicated that the compressive strength recovery of specimens was increased by 15–19% due to the addition of autolytic clinker microspheres. The recovery of compressive strength was also improved with the increase of pH value. The improvements in compressive strength recovery of specimens with microspheres were in the range of 15–19%, 15–31%, 25–36%, and 29–50% with the pH value of 7, 8, 10, and 12, respectively. It was also found that inner damage of cement-based matrix had greater recovery when pre-cracked specimens were cured in alkaline environments.