Cargando…

Locating an Underwater Target Using Angle-Only Measurements of Heterogeneous Sonobuoys Sensors with Low Accuracy

This paper considers locating an underwater target, where many sonobuoys are positioned to measure the bearing of the target’s sound. A sonobuoy has very low bearing accuracy, such as 10 degrees. In practice, we can use multiple heterogeneous sonobuoys, such that the variance of a sensor noise may b...

Descripción completa

Detalles Bibliográficos
Autor principal: Kim, Jonghoek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146392/
https://www.ncbi.nlm.nih.gov/pubmed/35632325
http://dx.doi.org/10.3390/s22103914
Descripción
Sumario:This paper considers locating an underwater target, where many sonobuoys are positioned to measure the bearing of the target’s sound. A sonobuoy has very low bearing accuracy, such as 10 degrees. In practice, we can use multiple heterogeneous sonobuoys, such that the variance of a sensor noise may be different from that of another sensor. In addition, the maximum sensing range of a sensor may be different from that of another sensor. The true target must exist within the sensing range of a sensor if the sensor detects the bearing of the target. In order to estimate the target position based on bearings-only measurements with low accuracy, this paper introduces a novel target localization approach based on multiple Virtual Measurement Sets (VMS). Here, each VMS is derived considering the bearing measurement noise of each sonar sensor. As far as we know, this paper is novel in locating a target’s 2D position based on heterogeneous sonobuoy sensors with low accuracy, considering the maximum sensing range of a sensor. The superiority (considering both time efficiency and location accuracy) of the proposed localization is verified by comparing it with other state-of-the-art localization methods using computer simulations.