Cargando…
Important Risk Factors in Patients with Nonvalvular Atrial Fibrillation Taking Dabigatran Using Integrated Machine Learning Scheme—A Post Hoc Analysis
Our study aims to develop an effective integrated machine learning (ML) scheme to predict vascular events and bleeding in patients with nonvalvular atrial fibrillation taking dabigatran and identify important risk factors. This study is a post-hoc analysis from the Randomized Evaluation of Long-Term...
Autores principales: | Huang, Yung-Chuan, Cheng, Yu-Chen, Jhou, Mao-Jhen, Chen, Mingchih, Lu, Chi-Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146635/ https://www.ncbi.nlm.nih.gov/pubmed/35629177 http://dx.doi.org/10.3390/jpm12050756 |
Ejemplares similares
-
Integrated Machine Learning Decision Tree Model for Risk Evaluation in Patients with Non-Valvular Atrial Fibrillation When Taking Different Doses of Dabigatran
por: Huang, Yung-Chuan, et al.
Publicado: (2023) -
Efficacy and Safety of Apixaban, Dabigatran, Rivaroxaban, and Warfarin in Asians With Nonvalvular Atrial Fibrillation
por: Chan, Yi‐Hsin, et al.
Publicado: (2018) -
Massive Left Atrial Thrombi during Dabigatran Therapy for Nonvalvular Atrial Fibrillation
por: Bachvarova, Velislava, et al.
Publicado: (2017) -
Association Between the Change in Total Bilirubin and Risk of Bleeding Among Patients With Nonvalvular Atrial Fibrillation Taking Dabigatran
por: Xiong, Yurong, et al.
Publicado: (2020) -
Effectiveness and Safety of Dabigatran, Rivaroxaban, and Apixaban Versus Warfarin in Nonvalvular Atrial Fibrillation
por: Yao, Xiaoxi, et al.
Publicado: (2016)