Cargando…
A Machine Learning Framework for Automated Accident Detection Based on Multimodal Sensors in Cars
Identifying accident patterns is one of the most vital research foci of driving analysis. Environmental or safety applications and the growing area of fleet management all benefit from accident detection contributions by minimizing the risk vehicles and drivers are subject to, improving their servic...
Autores principales: | Hozhabr Pour, Hawzhin, Li, Frédéric, Wegmeth, Lukas, Trense, Christian, Doniec, Rafał, Grzegorzek, Marcin, Wismüller, Roland |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146681/ https://www.ncbi.nlm.nih.gov/pubmed/35632039 http://dx.doi.org/10.3390/s22103634 |
Ejemplares similares
-
Sensor-Based Classification of Primary and Secondary Car Driver Activities Using Convolutional Neural Networks
por: Doniec, Rafał, et al.
Publicado: (2023) -
Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors
por: Li, Frédéric, et al.
Publicado: (2018) -
A Multimodal Feature Fusion Framework for Sleep-Deprived Fatigue Detection to Prevent Accidents
por: Virk, Jitender Singh, et al.
Publicado: (2023) -
Drowning in submerged cars caused by traffic accidents
por: Ketenci, Hüseyin Çetin, et al.
Publicado: (2022) -
Rank Pooling Approach for Wearable Sensor-Based ADLs Recognition
por: Nisar, Muhammad Adeel, et al.
Publicado: (2020)