Cargando…

Airport Cement Concrete with Ceramic Dust of Increased Thermal Resistance

The impact of aircraft on airport pavements is varied and closely related to their operational durability. The article presents the impact of the annealing process related to the forced impact of airplanes on airport pavements. The composition of cement concrete with ceramic dust, which is character...

Descripción completa

Detalles Bibliográficos
Autor principal: Linek, Małgorzata
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146712/
https://www.ncbi.nlm.nih.gov/pubmed/35629698
http://dx.doi.org/10.3390/ma15103673
_version_ 1784716630330179584
author Linek, Małgorzata
author_facet Linek, Małgorzata
author_sort Linek, Małgorzata
collection PubMed
description The impact of aircraft on airport pavements is varied and closely related to their operational durability. The article presents the impact of the annealing process related to the forced impact of airplanes on airport pavements. The composition of cement concrete with ceramic dust, which is characterized by increased thermal resistance, has been proposed. Two research cycles were programmed, differentiated by the annealing scheme and the way in which the temperature influences the annealing time. Samples stored at a temperature of 20 ± 2 °C were subjected to testing. The tests were carried out for two diagrams: A and B. The first—diagram A—included the continuous impact of the flue gas stream on the samples for a period of 350 min with a test step every 25 min. For the second—diagram B—the samples were alternately heated (1 min) and cooled (15 min). The influence of the proposed pavement mix on changes in the internal structure of cement concrete and the increase in its resistance to high temperatures was determined. In the microstructure of the CC-1 concrete matrix, it was found that there were plate-granular portlandite crystals up to 10 µm in size and ettringite crystals with a length of 8 µm. In the CC-2 concrete, the ettringite crystals were less numerous and had a length of up to 5 µm, there were also continuous contact zones between the aggregate grains and the cement matrix (diagrams A). The alternating annealing/cooling (diagram B) resulted in the ettringite crystals in the CC-1 matrix being up to 10 µm long, and in the CC-2 concrete up to 7 µm long. The contact zone between the aggregate grain and the matrix in CC-2 concrete was continuous, and the microcracks in CC-1 concrete were up to 8 nm. Regardless of the heating diagram, in the surface zone, there were larger microcracks in the CC-1 concrete than in the CC-2 concrete. For diagram A they were 14 µm and 4 µm and for diagram B they were 35 µm and 5 µm, respectively. It was found that concrete with ceramic dust is characterized by a lower and more stable temperature increase. In scheme A, the average temperature increase on the heated surface ranged from 46 °C to 79.5 °C for CC-1 concrete, and from 33.3 °C to 61.3 °C for CC-2 concrete. However, in scheme B, the temperature after 350 heating cycles for CC-1 concrete increased to 129.8 °C, and for CC-2 concrete to 116.6 °C. After the cooling period, the temperature of CC-1 and CC-2 concrete was comparable and amounted to 76.4 C and 76.3 °C, respectively. CC-2 concrete heats to lower values, and favorable changes in internal structure translate into higher strength and durability (after 350 heating cycles according to scheme A, the strength of CC-1 concrete was 67.1 MPa and of CC-2 concrete 83.9 MPa, while in scheme B, respectively, 55.4 MPa for CC-1 and 75 MPa for CC-2).
format Online
Article
Text
id pubmed-9146712
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91467122022-05-29 Airport Cement Concrete with Ceramic Dust of Increased Thermal Resistance Linek, Małgorzata Materials (Basel) Article The impact of aircraft on airport pavements is varied and closely related to their operational durability. The article presents the impact of the annealing process related to the forced impact of airplanes on airport pavements. The composition of cement concrete with ceramic dust, which is characterized by increased thermal resistance, has been proposed. Two research cycles were programmed, differentiated by the annealing scheme and the way in which the temperature influences the annealing time. Samples stored at a temperature of 20 ± 2 °C were subjected to testing. The tests were carried out for two diagrams: A and B. The first—diagram A—included the continuous impact of the flue gas stream on the samples for a period of 350 min with a test step every 25 min. For the second—diagram B—the samples were alternately heated (1 min) and cooled (15 min). The influence of the proposed pavement mix on changes in the internal structure of cement concrete and the increase in its resistance to high temperatures was determined. In the microstructure of the CC-1 concrete matrix, it was found that there were plate-granular portlandite crystals up to 10 µm in size and ettringite crystals with a length of 8 µm. In the CC-2 concrete, the ettringite crystals were less numerous and had a length of up to 5 µm, there were also continuous contact zones between the aggregate grains and the cement matrix (diagrams A). The alternating annealing/cooling (diagram B) resulted in the ettringite crystals in the CC-1 matrix being up to 10 µm long, and in the CC-2 concrete up to 7 µm long. The contact zone between the aggregate grain and the matrix in CC-2 concrete was continuous, and the microcracks in CC-1 concrete were up to 8 nm. Regardless of the heating diagram, in the surface zone, there were larger microcracks in the CC-1 concrete than in the CC-2 concrete. For diagram A they were 14 µm and 4 µm and for diagram B they were 35 µm and 5 µm, respectively. It was found that concrete with ceramic dust is characterized by a lower and more stable temperature increase. In scheme A, the average temperature increase on the heated surface ranged from 46 °C to 79.5 °C for CC-1 concrete, and from 33.3 °C to 61.3 °C for CC-2 concrete. However, in scheme B, the temperature after 350 heating cycles for CC-1 concrete increased to 129.8 °C, and for CC-2 concrete to 116.6 °C. After the cooling period, the temperature of CC-1 and CC-2 concrete was comparable and amounted to 76.4 C and 76.3 °C, respectively. CC-2 concrete heats to lower values, and favorable changes in internal structure translate into higher strength and durability (after 350 heating cycles according to scheme A, the strength of CC-1 concrete was 67.1 MPa and of CC-2 concrete 83.9 MPa, while in scheme B, respectively, 55.4 MPa for CC-1 and 75 MPa for CC-2). MDPI 2022-05-20 /pmc/articles/PMC9146712/ /pubmed/35629698 http://dx.doi.org/10.3390/ma15103673 Text en © 2022 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Linek, Małgorzata
Airport Cement Concrete with Ceramic Dust of Increased Thermal Resistance
title Airport Cement Concrete with Ceramic Dust of Increased Thermal Resistance
title_full Airport Cement Concrete with Ceramic Dust of Increased Thermal Resistance
title_fullStr Airport Cement Concrete with Ceramic Dust of Increased Thermal Resistance
title_full_unstemmed Airport Cement Concrete with Ceramic Dust of Increased Thermal Resistance
title_short Airport Cement Concrete with Ceramic Dust of Increased Thermal Resistance
title_sort airport cement concrete with ceramic dust of increased thermal resistance
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146712/
https://www.ncbi.nlm.nih.gov/pubmed/35629698
http://dx.doi.org/10.3390/ma15103673
work_keys_str_mv AT linekmałgorzata airportcementconcretewithceramicdustofincreasedthermalresistance