Cargando…
Stability Analysis of Unsteady Hybrid Nanofluid Flow over the Falkner-Skan Wedge
Numerous manufacturing processes, including the drawing of plastic films, have a major impact on mass transport. These functionalities necessitate the solution of the Falkner–Skan equation and some of its configurations when applied to various geometries and boundary conditions. Hence, the current p...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146740/ https://www.ncbi.nlm.nih.gov/pubmed/35630996 http://dx.doi.org/10.3390/nano12101771 |
_version_ | 1784716637162700800 |
---|---|
author | Zainal, Nurul Amira Nazar, Roslinda Naganthran, Kohilavani Pop, Ioan |
author_facet | Zainal, Nurul Amira Nazar, Roslinda Naganthran, Kohilavani Pop, Ioan |
author_sort | Zainal, Nurul Amira |
collection | PubMed |
description | Numerous manufacturing processes, including the drawing of plastic films, have a major impact on mass transport. These functionalities necessitate the solution of the Falkner–Skan equation and some of its configurations when applied to various geometries and boundary conditions. Hence, the current paper discusses the impact of unsteady hybrid nanofluid flow on a moving Falkner–Skan wedge with a convective boundary condition. This problem is modeled by partial differential equations, which are then converted into ordinary (similar) differential equations using appropriate similarity transformations. The bvp4c technique in MATLAB solves these ordinary differential equations numerically. Since more than one solution is possible in this paper, stability analysis is conducted. Thus, it is found that only one stable solution is identified as reliable (physically realizable in practice). The skin friction coefficient and heat transfer rate, along with the velocity and temperature profile distributions, are examined to determine the values of several parameters. The findings reveal that dual-type nanoparticles and wedge angle parameters improve thermal efficiency. A lower value of the unsteadiness parameter reduces the efficiency of hybrid nanofluids in terms of heat transfer and skin friction coefficient, whereas increasing the Biot number of the working fluid does not affect the critical point in the current analysis. |
format | Online Article Text |
id | pubmed-9146740 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91467402022-05-29 Stability Analysis of Unsteady Hybrid Nanofluid Flow over the Falkner-Skan Wedge Zainal, Nurul Amira Nazar, Roslinda Naganthran, Kohilavani Pop, Ioan Nanomaterials (Basel) Article Numerous manufacturing processes, including the drawing of plastic films, have a major impact on mass transport. These functionalities necessitate the solution of the Falkner–Skan equation and some of its configurations when applied to various geometries and boundary conditions. Hence, the current paper discusses the impact of unsteady hybrid nanofluid flow on a moving Falkner–Skan wedge with a convective boundary condition. This problem is modeled by partial differential equations, which are then converted into ordinary (similar) differential equations using appropriate similarity transformations. The bvp4c technique in MATLAB solves these ordinary differential equations numerically. Since more than one solution is possible in this paper, stability analysis is conducted. Thus, it is found that only one stable solution is identified as reliable (physically realizable in practice). The skin friction coefficient and heat transfer rate, along with the velocity and temperature profile distributions, are examined to determine the values of several parameters. The findings reveal that dual-type nanoparticles and wedge angle parameters improve thermal efficiency. A lower value of the unsteadiness parameter reduces the efficiency of hybrid nanofluids in terms of heat transfer and skin friction coefficient, whereas increasing the Biot number of the working fluid does not affect the critical point in the current analysis. MDPI 2022-05-23 /pmc/articles/PMC9146740/ /pubmed/35630996 http://dx.doi.org/10.3390/nano12101771 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zainal, Nurul Amira Nazar, Roslinda Naganthran, Kohilavani Pop, Ioan Stability Analysis of Unsteady Hybrid Nanofluid Flow over the Falkner-Skan Wedge |
title | Stability Analysis of Unsteady Hybrid Nanofluid Flow over the Falkner-Skan Wedge |
title_full | Stability Analysis of Unsteady Hybrid Nanofluid Flow over the Falkner-Skan Wedge |
title_fullStr | Stability Analysis of Unsteady Hybrid Nanofluid Flow over the Falkner-Skan Wedge |
title_full_unstemmed | Stability Analysis of Unsteady Hybrid Nanofluid Flow over the Falkner-Skan Wedge |
title_short | Stability Analysis of Unsteady Hybrid Nanofluid Flow over the Falkner-Skan Wedge |
title_sort | stability analysis of unsteady hybrid nanofluid flow over the falkner-skan wedge |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146740/ https://www.ncbi.nlm.nih.gov/pubmed/35630996 http://dx.doi.org/10.3390/nano12101771 |
work_keys_str_mv | AT zainalnurulamira stabilityanalysisofunsteadyhybridnanofluidflowoverthefalknerskanwedge AT nazarroslinda stabilityanalysisofunsteadyhybridnanofluidflowoverthefalknerskanwedge AT naganthrankohilavani stabilityanalysisofunsteadyhybridnanofluidflowoverthefalknerskanwedge AT popioan stabilityanalysisofunsteadyhybridnanofluidflowoverthefalknerskanwedge |