Cargando…
Influence of Specific Treatment Parameters on Nontarget and Out-of-Field Doses in a Phantom Model of Prostate SBRT with CyberKnife and TrueBeam
The aim of the study was to determine the influence of a key treatment plan and beam parameters on overall dose distribution and on doses in organs laying in further distance from the target during prostate SBRT. Multiple representative treatment plans (n = 12) for TrueBeam and CyberKnife were prepa...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146748/ https://www.ncbi.nlm.nih.gov/pubmed/35629296 http://dx.doi.org/10.3390/life12050628 |
_version_ | 1784716639087886336 |
---|---|
author | Kruszyna-Mochalska, Marta Skrobala, Agnieszka Romanski, Piotr Ryczkowski, Adam Suchorska, Wiktoria Kulcenty, Katarzyna Piotrowski, Igor Borowicz, Dorota Graczyk, Kinga Matuszak, Natalia Malicki, Julian |
author_facet | Kruszyna-Mochalska, Marta Skrobala, Agnieszka Romanski, Piotr Ryczkowski, Adam Suchorska, Wiktoria Kulcenty, Katarzyna Piotrowski, Igor Borowicz, Dorota Graczyk, Kinga Matuszak, Natalia Malicki, Julian |
author_sort | Kruszyna-Mochalska, Marta |
collection | PubMed |
description | The aim of the study was to determine the influence of a key treatment plan and beam parameters on overall dose distribution and on doses in organs laying in further distance from the target during prostate SBRT. Multiple representative treatment plans (n = 12) for TrueBeam and CyberKnife were prepared and evaluated. Nontarget doses were measured with anionization chamber, in a quasi-humanoid phantom at four sites corresponding to the intestines, right lung, thyroid, and head. The following parameters were modified: radiotherapy technique, presence or not of a flattening filter, degree of modulation, and use or not of jaw tracking function for TrueBeam and beam orientation set-up, optimization techniques, and number of MUs for CyberKnife. After usual optimization doses in intestines (near the target) were 0.73% and 0.76%, in head (farthest from target) 0.05% and 0.19% for TrueBeam and CyberKnife, respectively. For TrueBeam the highest peripheral (head, thyroid, lung) doses occurred for the VMAT with the flattening filter while the lowest for 3DCRT. For CyberKnife the highest doses were for gantry with caudal direction beams blocked (gantry close to OARs) while the lowest was the low modulated VOLO optimization technique. The easiest method to reduce peripheral doses was to combine FFF with jaw tracking and reducing monitor units at TrueBeam and to avoid gantry position close to OARs together with reduction of monitor units at CyberKnife, respectively. The presented strategies allowed to significantly reduce out-of-field and nontarget doses during prostate radiotherapy delivered with TrueBeam and CyberKnife. A different approach was required to reduce peripheral doses because of the difference in dose delivery techniques: non-coplanar using CyberKnife and coplanar using TrueBeam, respectively. |
format | Online Article Text |
id | pubmed-9146748 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91467482022-05-29 Influence of Specific Treatment Parameters on Nontarget and Out-of-Field Doses in a Phantom Model of Prostate SBRT with CyberKnife and TrueBeam Kruszyna-Mochalska, Marta Skrobala, Agnieszka Romanski, Piotr Ryczkowski, Adam Suchorska, Wiktoria Kulcenty, Katarzyna Piotrowski, Igor Borowicz, Dorota Graczyk, Kinga Matuszak, Natalia Malicki, Julian Life (Basel) Article The aim of the study was to determine the influence of a key treatment plan and beam parameters on overall dose distribution and on doses in organs laying in further distance from the target during prostate SBRT. Multiple representative treatment plans (n = 12) for TrueBeam and CyberKnife were prepared and evaluated. Nontarget doses were measured with anionization chamber, in a quasi-humanoid phantom at four sites corresponding to the intestines, right lung, thyroid, and head. The following parameters were modified: radiotherapy technique, presence or not of a flattening filter, degree of modulation, and use or not of jaw tracking function for TrueBeam and beam orientation set-up, optimization techniques, and number of MUs for CyberKnife. After usual optimization doses in intestines (near the target) were 0.73% and 0.76%, in head (farthest from target) 0.05% and 0.19% for TrueBeam and CyberKnife, respectively. For TrueBeam the highest peripheral (head, thyroid, lung) doses occurred for the VMAT with the flattening filter while the lowest for 3DCRT. For CyberKnife the highest doses were for gantry with caudal direction beams blocked (gantry close to OARs) while the lowest was the low modulated VOLO optimization technique. The easiest method to reduce peripheral doses was to combine FFF with jaw tracking and reducing monitor units at TrueBeam and to avoid gantry position close to OARs together with reduction of monitor units at CyberKnife, respectively. The presented strategies allowed to significantly reduce out-of-field and nontarget doses during prostate radiotherapy delivered with TrueBeam and CyberKnife. A different approach was required to reduce peripheral doses because of the difference in dose delivery techniques: non-coplanar using CyberKnife and coplanar using TrueBeam, respectively. MDPI 2022-04-23 /pmc/articles/PMC9146748/ /pubmed/35629296 http://dx.doi.org/10.3390/life12050628 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kruszyna-Mochalska, Marta Skrobala, Agnieszka Romanski, Piotr Ryczkowski, Adam Suchorska, Wiktoria Kulcenty, Katarzyna Piotrowski, Igor Borowicz, Dorota Graczyk, Kinga Matuszak, Natalia Malicki, Julian Influence of Specific Treatment Parameters on Nontarget and Out-of-Field Doses in a Phantom Model of Prostate SBRT with CyberKnife and TrueBeam |
title | Influence of Specific Treatment Parameters on Nontarget and Out-of-Field Doses in a Phantom Model of Prostate SBRT with CyberKnife and TrueBeam |
title_full | Influence of Specific Treatment Parameters on Nontarget and Out-of-Field Doses in a Phantom Model of Prostate SBRT with CyberKnife and TrueBeam |
title_fullStr | Influence of Specific Treatment Parameters on Nontarget and Out-of-Field Doses in a Phantom Model of Prostate SBRT with CyberKnife and TrueBeam |
title_full_unstemmed | Influence of Specific Treatment Parameters on Nontarget and Out-of-Field Doses in a Phantom Model of Prostate SBRT with CyberKnife and TrueBeam |
title_short | Influence of Specific Treatment Parameters on Nontarget and Out-of-Field Doses in a Phantom Model of Prostate SBRT with CyberKnife and TrueBeam |
title_sort | influence of specific treatment parameters on nontarget and out-of-field doses in a phantom model of prostate sbrt with cyberknife and truebeam |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146748/ https://www.ncbi.nlm.nih.gov/pubmed/35629296 http://dx.doi.org/10.3390/life12050628 |
work_keys_str_mv | AT kruszynamochalskamarta influenceofspecifictreatmentparametersonnontargetandoutoffielddosesinaphantommodelofprostatesbrtwithcyberknifeandtruebeam AT skrobalaagnieszka influenceofspecifictreatmentparametersonnontargetandoutoffielddosesinaphantommodelofprostatesbrtwithcyberknifeandtruebeam AT romanskipiotr influenceofspecifictreatmentparametersonnontargetandoutoffielddosesinaphantommodelofprostatesbrtwithcyberknifeandtruebeam AT ryczkowskiadam influenceofspecifictreatmentparametersonnontargetandoutoffielddosesinaphantommodelofprostatesbrtwithcyberknifeandtruebeam AT suchorskawiktoria influenceofspecifictreatmentparametersonnontargetandoutoffielddosesinaphantommodelofprostatesbrtwithcyberknifeandtruebeam AT kulcentykatarzyna influenceofspecifictreatmentparametersonnontargetandoutoffielddosesinaphantommodelofprostatesbrtwithcyberknifeandtruebeam AT piotrowskiigor influenceofspecifictreatmentparametersonnontargetandoutoffielddosesinaphantommodelofprostatesbrtwithcyberknifeandtruebeam AT borowiczdorota influenceofspecifictreatmentparametersonnontargetandoutoffielddosesinaphantommodelofprostatesbrtwithcyberknifeandtruebeam AT graczykkinga influenceofspecifictreatmentparametersonnontargetandoutoffielddosesinaphantommodelofprostatesbrtwithcyberknifeandtruebeam AT matuszaknatalia influenceofspecifictreatmentparametersonnontargetandoutoffielddosesinaphantommodelofprostatesbrtwithcyberknifeandtruebeam AT malickijulian influenceofspecifictreatmentparametersonnontargetandoutoffielddosesinaphantommodelofprostatesbrtwithcyberknifeandtruebeam |