Cargando…
Machine Learning Approach for Application-Tailored Nanolubricants’ Design
The fascinating tribological phenomenon of carbon nanotubes (CNTs) observed at the nanoscale was confirmed in our numerous macroscale experiments. We designed and employed CNT-containing nanolubricants strictly for polymer lubrication. In this paper, we present the experiment characterising how the...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146785/ https://www.ncbi.nlm.nih.gov/pubmed/35630989 http://dx.doi.org/10.3390/nano12101765 |
_version_ | 1784716648136048640 |
---|---|
author | Kałużny, Jarosław Świetlicka, Aleksandra Wojciechowski, Łukasz Boncel, Sławomir Kinal, Grzegorz Runka, Tomasz Nowicki, Marek Stepanenko, Oleksandr Gapiński, Bartosz Leśniewicz, Joanna Błaszkiewicz, Paulina Kempa, Krzysztof |
author_facet | Kałużny, Jarosław Świetlicka, Aleksandra Wojciechowski, Łukasz Boncel, Sławomir Kinal, Grzegorz Runka, Tomasz Nowicki, Marek Stepanenko, Oleksandr Gapiński, Bartosz Leśniewicz, Joanna Błaszkiewicz, Paulina Kempa, Krzysztof |
author_sort | Kałużny, Jarosław |
collection | PubMed |
description | The fascinating tribological phenomenon of carbon nanotubes (CNTs) observed at the nanoscale was confirmed in our numerous macroscale experiments. We designed and employed CNT-containing nanolubricants strictly for polymer lubrication. In this paper, we present the experiment characterising how the CNT structure determines its lubricity on various types of polymers. There is a complex correlation between the microscopic and spectral properties of CNTs and the tribological parameters of the resulting lubricants. This confirms indirectly that the nature of the tribological mechanisms driven by the variety of CNT–polymer interactions might be far more complex than ever described before. We propose plasmonic interactions as an extension for existing models describing the tribological roles of nanomaterials. In the absence of quantitative microscopic calculations of tribological parameters, phenomenological strategies must be employed. One of the most powerful emerging numerical methods is machine learning (ML). Here, we propose to use this technique, in combination with molecular and supramolecular recognition, to understand the morphology and macro-assembly processing strategies for the targeted design of superlubricants. |
format | Online Article Text |
id | pubmed-9146785 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91467852022-05-29 Machine Learning Approach for Application-Tailored Nanolubricants’ Design Kałużny, Jarosław Świetlicka, Aleksandra Wojciechowski, Łukasz Boncel, Sławomir Kinal, Grzegorz Runka, Tomasz Nowicki, Marek Stepanenko, Oleksandr Gapiński, Bartosz Leśniewicz, Joanna Błaszkiewicz, Paulina Kempa, Krzysztof Nanomaterials (Basel) Article The fascinating tribological phenomenon of carbon nanotubes (CNTs) observed at the nanoscale was confirmed in our numerous macroscale experiments. We designed and employed CNT-containing nanolubricants strictly for polymer lubrication. In this paper, we present the experiment characterising how the CNT structure determines its lubricity on various types of polymers. There is a complex correlation between the microscopic and spectral properties of CNTs and the tribological parameters of the resulting lubricants. This confirms indirectly that the nature of the tribological mechanisms driven by the variety of CNT–polymer interactions might be far more complex than ever described before. We propose plasmonic interactions as an extension for existing models describing the tribological roles of nanomaterials. In the absence of quantitative microscopic calculations of tribological parameters, phenomenological strategies must be employed. One of the most powerful emerging numerical methods is machine learning (ML). Here, we propose to use this technique, in combination with molecular and supramolecular recognition, to understand the morphology and macro-assembly processing strategies for the targeted design of superlubricants. MDPI 2022-05-22 /pmc/articles/PMC9146785/ /pubmed/35630989 http://dx.doi.org/10.3390/nano12101765 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kałużny, Jarosław Świetlicka, Aleksandra Wojciechowski, Łukasz Boncel, Sławomir Kinal, Grzegorz Runka, Tomasz Nowicki, Marek Stepanenko, Oleksandr Gapiński, Bartosz Leśniewicz, Joanna Błaszkiewicz, Paulina Kempa, Krzysztof Machine Learning Approach for Application-Tailored Nanolubricants’ Design |
title | Machine Learning Approach for Application-Tailored Nanolubricants’ Design |
title_full | Machine Learning Approach for Application-Tailored Nanolubricants’ Design |
title_fullStr | Machine Learning Approach for Application-Tailored Nanolubricants’ Design |
title_full_unstemmed | Machine Learning Approach for Application-Tailored Nanolubricants’ Design |
title_short | Machine Learning Approach for Application-Tailored Nanolubricants’ Design |
title_sort | machine learning approach for application-tailored nanolubricants’ design |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146785/ https://www.ncbi.nlm.nih.gov/pubmed/35630989 http://dx.doi.org/10.3390/nano12101765 |
work_keys_str_mv | AT kałuznyjarosław machinelearningapproachforapplicationtailorednanolubricantsdesign AT swietlickaaleksandra machinelearningapproachforapplicationtailorednanolubricantsdesign AT wojciechowskiłukasz machinelearningapproachforapplicationtailorednanolubricantsdesign AT boncelsławomir machinelearningapproachforapplicationtailorednanolubricantsdesign AT kinalgrzegorz machinelearningapproachforapplicationtailorednanolubricantsdesign AT runkatomasz machinelearningapproachforapplicationtailorednanolubricantsdesign AT nowickimarek machinelearningapproachforapplicationtailorednanolubricantsdesign AT stepanenkooleksandr machinelearningapproachforapplicationtailorednanolubricantsdesign AT gapinskibartosz machinelearningapproachforapplicationtailorednanolubricantsdesign AT lesniewiczjoanna machinelearningapproachforapplicationtailorednanolubricantsdesign AT błaszkiewiczpaulina machinelearningapproachforapplicationtailorednanolubricantsdesign AT kempakrzysztof machinelearningapproachforapplicationtailorednanolubricantsdesign |