Cargando…

Machine Learning Approach for Application-Tailored Nanolubricants’ Design

The fascinating tribological phenomenon of carbon nanotubes (CNTs) observed at the nanoscale was confirmed in our numerous macroscale experiments. We designed and employed CNT-containing nanolubricants strictly for polymer lubrication. In this paper, we present the experiment characterising how the...

Descripción completa

Detalles Bibliográficos
Autores principales: Kałużny, Jarosław, Świetlicka, Aleksandra, Wojciechowski, Łukasz, Boncel, Sławomir, Kinal, Grzegorz, Runka, Tomasz, Nowicki, Marek, Stepanenko, Oleksandr, Gapiński, Bartosz, Leśniewicz, Joanna, Błaszkiewicz, Paulina, Kempa, Krzysztof
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146785/
https://www.ncbi.nlm.nih.gov/pubmed/35630989
http://dx.doi.org/10.3390/nano12101765
_version_ 1784716648136048640
author Kałużny, Jarosław
Świetlicka, Aleksandra
Wojciechowski, Łukasz
Boncel, Sławomir
Kinal, Grzegorz
Runka, Tomasz
Nowicki, Marek
Stepanenko, Oleksandr
Gapiński, Bartosz
Leśniewicz, Joanna
Błaszkiewicz, Paulina
Kempa, Krzysztof
author_facet Kałużny, Jarosław
Świetlicka, Aleksandra
Wojciechowski, Łukasz
Boncel, Sławomir
Kinal, Grzegorz
Runka, Tomasz
Nowicki, Marek
Stepanenko, Oleksandr
Gapiński, Bartosz
Leśniewicz, Joanna
Błaszkiewicz, Paulina
Kempa, Krzysztof
author_sort Kałużny, Jarosław
collection PubMed
description The fascinating tribological phenomenon of carbon nanotubes (CNTs) observed at the nanoscale was confirmed in our numerous macroscale experiments. We designed and employed CNT-containing nanolubricants strictly for polymer lubrication. In this paper, we present the experiment characterising how the CNT structure determines its lubricity on various types of polymers. There is a complex correlation between the microscopic and spectral properties of CNTs and the tribological parameters of the resulting lubricants. This confirms indirectly that the nature of the tribological mechanisms driven by the variety of CNT–polymer interactions might be far more complex than ever described before. We propose plasmonic interactions as an extension for existing models describing the tribological roles of nanomaterials. In the absence of quantitative microscopic calculations of tribological parameters, phenomenological strategies must be employed. One of the most powerful emerging numerical methods is machine learning (ML). Here, we propose to use this technique, in combination with molecular and supramolecular recognition, to understand the morphology and macro-assembly processing strategies for the targeted design of superlubricants.
format Online
Article
Text
id pubmed-9146785
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91467852022-05-29 Machine Learning Approach for Application-Tailored Nanolubricants’ Design Kałużny, Jarosław Świetlicka, Aleksandra Wojciechowski, Łukasz Boncel, Sławomir Kinal, Grzegorz Runka, Tomasz Nowicki, Marek Stepanenko, Oleksandr Gapiński, Bartosz Leśniewicz, Joanna Błaszkiewicz, Paulina Kempa, Krzysztof Nanomaterials (Basel) Article The fascinating tribological phenomenon of carbon nanotubes (CNTs) observed at the nanoscale was confirmed in our numerous macroscale experiments. We designed and employed CNT-containing nanolubricants strictly for polymer lubrication. In this paper, we present the experiment characterising how the CNT structure determines its lubricity on various types of polymers. There is a complex correlation between the microscopic and spectral properties of CNTs and the tribological parameters of the resulting lubricants. This confirms indirectly that the nature of the tribological mechanisms driven by the variety of CNT–polymer interactions might be far more complex than ever described before. We propose plasmonic interactions as an extension for existing models describing the tribological roles of nanomaterials. In the absence of quantitative microscopic calculations of tribological parameters, phenomenological strategies must be employed. One of the most powerful emerging numerical methods is machine learning (ML). Here, we propose to use this technique, in combination with molecular and supramolecular recognition, to understand the morphology and macro-assembly processing strategies for the targeted design of superlubricants. MDPI 2022-05-22 /pmc/articles/PMC9146785/ /pubmed/35630989 http://dx.doi.org/10.3390/nano12101765 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kałużny, Jarosław
Świetlicka, Aleksandra
Wojciechowski, Łukasz
Boncel, Sławomir
Kinal, Grzegorz
Runka, Tomasz
Nowicki, Marek
Stepanenko, Oleksandr
Gapiński, Bartosz
Leśniewicz, Joanna
Błaszkiewicz, Paulina
Kempa, Krzysztof
Machine Learning Approach for Application-Tailored Nanolubricants’ Design
title Machine Learning Approach for Application-Tailored Nanolubricants’ Design
title_full Machine Learning Approach for Application-Tailored Nanolubricants’ Design
title_fullStr Machine Learning Approach for Application-Tailored Nanolubricants’ Design
title_full_unstemmed Machine Learning Approach for Application-Tailored Nanolubricants’ Design
title_short Machine Learning Approach for Application-Tailored Nanolubricants’ Design
title_sort machine learning approach for application-tailored nanolubricants’ design
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146785/
https://www.ncbi.nlm.nih.gov/pubmed/35630989
http://dx.doi.org/10.3390/nano12101765
work_keys_str_mv AT kałuznyjarosław machinelearningapproachforapplicationtailorednanolubricantsdesign
AT swietlickaaleksandra machinelearningapproachforapplicationtailorednanolubricantsdesign
AT wojciechowskiłukasz machinelearningapproachforapplicationtailorednanolubricantsdesign
AT boncelsławomir machinelearningapproachforapplicationtailorednanolubricantsdesign
AT kinalgrzegorz machinelearningapproachforapplicationtailorednanolubricantsdesign
AT runkatomasz machinelearningapproachforapplicationtailorednanolubricantsdesign
AT nowickimarek machinelearningapproachforapplicationtailorednanolubricantsdesign
AT stepanenkooleksandr machinelearningapproachforapplicationtailorednanolubricantsdesign
AT gapinskibartosz machinelearningapproachforapplicationtailorednanolubricantsdesign
AT lesniewiczjoanna machinelearningapproachforapplicationtailorednanolubricantsdesign
AT błaszkiewiczpaulina machinelearningapproachforapplicationtailorednanolubricantsdesign
AT kempakrzysztof machinelearningapproachforapplicationtailorednanolubricantsdesign