Cargando…

The Acute Effects of Heavy Sled Towing on Acceleration Performance and Sprint Mechanical and Kinematic Characteristics

The aim of this study was to investigate the effects of heavy sled towing using a load corresponding to a 50% reduction of the individual theoretical maximal velocity (ranged 57–73% body mass) on subsequent 30 m sprint performance, velocity, mechanical variables (theoretical maximal horizontal force...

Descripción completa

Detalles Bibliográficos
Autores principales: Zisi, Maria, Stavridis, Ioannis, Agilara, Georgia-Olanemi, Economou, Theodosia, Paradisis, Giorgos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146810/
https://www.ncbi.nlm.nih.gov/pubmed/35622486
http://dx.doi.org/10.3390/sports10050077
Descripción
Sumario:The aim of this study was to investigate the effects of heavy sled towing using a load corresponding to a 50% reduction of the individual theoretical maximal velocity (ranged 57–73% body mass) on subsequent 30 m sprint performance, velocity, mechanical variables (theoretical maximal horizontal force, theoretical maximal horizontal velocity, maximal mechanical power output, slope of the linear force–velocity relationship, maximal ratio of horizontal to total force and decrease in the ratio of horizontal to total force) and kinematics (step length and rate, contact and flight time). Twelve (n = 5 males and n = 7 females) junior running sprinters performed an exercise under two intervention conditions in random order. The experimental condition (EXP) consisted of two repetitions of 20 m resisted sprints, while in the control condition (CON), an active recovery was performed. Before (baseline) and after (post) the interventions, the 30 m sprint tests were analyzed. Participants showed faster 30 m sprint times following sled towing (p = 0.005). Running velocity was significantly higher in EXP at 5–10 m (p = 0.032), 10–15 m (p = 0.006), 15–20 m (p = 0.004), 20–25 m (p = 0.015) and 25–30 m (p = 0.014). No significant changes in sprint mechanical variables and kinematics were observed. Heavy sled towing appeared to be an effective post-activation potentiation stimulus to acutely enhance sprint acceleration performance with no effect on the athlete’s running technique.