Cargando…

Nanofused Hierarchically Porous MIL-101(Cr) for Enhanced Methyl Orange Removal and Improved Catalytic Activity

Hierarchically porous MIL-101(Cr) (H-MIL-101(Cr)) with meso/macro-pores was directly prepared via nanofusion progress by using butyric acid as a modulating agent. In the methyl orange (MO) adsorption experiments, H-MIL-101(Cr) showed a high adsorption capability of 369.8 mg g(−1), which was 1.52-fol...

Descripción completa

Detalles Bibliográficos
Autores principales: Zou, Minmin, Dong, Ming, Luo, Mingliang, Zhu, Hexin, Zhao, Tian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146841/
https://www.ncbi.nlm.nih.gov/pubmed/35629671
http://dx.doi.org/10.3390/ma15103645
Descripción
Sumario:Hierarchically porous MIL-101(Cr) (H-MIL-101(Cr)) with meso/macro-pores was directly prepared via nanofusion progress by using butyric acid as a modulating agent. In the methyl orange (MO) adsorption experiments, H-MIL-101(Cr) showed a high adsorption capability of 369.8 mg g(−1), which was 1.52-fold greater than that of pristine MIL-101(Cr) (P-MIL-101(Cr)). While in the oxidation reaction of indene and 1-dodecene tests, H-MIL-101(Cr) presented much higher catalytic efficiency, with turnover frequency (TOF) values of 0.7242 mmol g(−1) min(−1) and 0.1492 mmol g(−1) min(−1), respectively, which were 28% and 34% greater than that in the case of P-MIL-101(Cr). Thus, compared with P-MIL-101(Cr), H-MIL-101(Cr) exhibited better removal efficiency and higher levels of activity in the oxidation reactions of indene and 1-dodecene. The unique structure of H-MIL-101(Cr) also contributed to its superior performance in these processes.