Cargando…
A Deep-Learning-Based Health Indicator Constructor Using Kullback–Leibler Divergence for Predicting the Remaining Useful Life of Concrete Structures
This paper proposes a new technique for the construction of a concrete-beam health indicator based on the Kullback–Leibler divergence (KLD) and deep learning. Health indicator (HI) construction is a vital part of remaining useful lifetime (RUL) approaches for monitoring the health of concrete struct...
Autores principales: | Nguyen, Tuan-Khai, Ahmad, Zahoor, Kim, Jong-Myon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146863/ https://www.ncbi.nlm.nih.gov/pubmed/35632097 http://dx.doi.org/10.3390/s22103687 |
Ejemplares similares
-
Kullback–Leibler divergence and the Pareto–Exponential approximation
por: Weinberg, G. V.
Publicado: (2016) -
Computation of Kullback–Leibler Divergence in Bayesian Networks
por: Moral, Serafín, et al.
Publicado: (2021) -
A data assimilation framework that uses the Kullback-Leibler divergence
por: Pimentel, Sam, et al.
Publicado: (2021) -
Kullback Leibler divergence in complete bacterial and phage genomes
por: Akhter, Sajia, et al.
Publicado: (2017) -
Kullback–Leibler Divergence of a Freely Cooling Granular Gas
por: Megías, Alberto, et al.
Publicado: (2020)