Cargando…
NIR Instruments and Prediction Methods for Rapid Access to Grain Protein Content in Multiple Cereals
Achieving global goals for sustainable nutrition, health, and wellbeing will depend on delivering enhanced diets to humankind. This will require instantaneous access to information on food-source quality at key points of agri-food systems. Although laboratory analysis and benchtop NIR spectrometers...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146900/ https://www.ncbi.nlm.nih.gov/pubmed/35632119 http://dx.doi.org/10.3390/s22103710 |
_version_ | 1784716676151902208 |
---|---|
author | Chadalavada, Keerthi Anbazhagan, Krithika Ndour, Adama Choudhary, Sunita Palmer, William Flynn, Jamie R. Mallayee, Srikanth Pothu, Sharada Prasad, Kodukula Venkata Subrahamanya Vara Varijakshapanikar, Padmakumar Jones, Chris S. Kholová, Jana |
author_facet | Chadalavada, Keerthi Anbazhagan, Krithika Ndour, Adama Choudhary, Sunita Palmer, William Flynn, Jamie R. Mallayee, Srikanth Pothu, Sharada Prasad, Kodukula Venkata Subrahamanya Vara Varijakshapanikar, Padmakumar Jones, Chris S. Kholová, Jana |
author_sort | Chadalavada, Keerthi |
collection | PubMed |
description | Achieving global goals for sustainable nutrition, health, and wellbeing will depend on delivering enhanced diets to humankind. This will require instantaneous access to information on food-source quality at key points of agri-food systems. Although laboratory analysis and benchtop NIR spectrometers are regularly used to quantify grain quality, these do not suit all end users, for example, stakeholders in decentralized agri-food chains that are typical in emerging economies. Therefore, we explored benchtop and portable NIR instruments, and the methods that might aid these particular end uses. For this purpose, we generated NIR spectra for 328 grain samples from multiple cereals (finger millet, foxtail millet, maize, pearl millet, and sorghum) with a standard benchtop NIR spectrometer (DS2500, FOSS) and a novel portable NIR-based instrument (HL-EVT5, Hone). We explored classical deterministic methods (via winISI, FOSS), novel machine learning (ML)-driven methods (via Hone Create, Hone), and a convolutional neural network (CNN)-based method for building the calibrations to predict grain protein out of the NIR spectra. All of the tested methods enabled us to build relevant calibrations out of both types of spectra (i.e., R(2) ≥ 0.90, RMSE ≤ 0.91, RPD ≥ 3.08). Generally, the calibration methods integrating the ML techniques tended to enhance the prediction capacity of the model. We also documented that the prediction of grain protein content based on the NIR spectra generated using the novel portable instrument (HL-EVT5, Hone) was highly relevant for quantitative protein predictions (R(2) = 0.91, RMSE = 0.97, RPD = 3.48). Thus, the presented findings lay the foundations for the expanded use of NIR spectroscopy in agricultural research, development, and trade. |
format | Online Article Text |
id | pubmed-9146900 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91469002022-05-29 NIR Instruments and Prediction Methods for Rapid Access to Grain Protein Content in Multiple Cereals Chadalavada, Keerthi Anbazhagan, Krithika Ndour, Adama Choudhary, Sunita Palmer, William Flynn, Jamie R. Mallayee, Srikanth Pothu, Sharada Prasad, Kodukula Venkata Subrahamanya Vara Varijakshapanikar, Padmakumar Jones, Chris S. Kholová, Jana Sensors (Basel) Article Achieving global goals for sustainable nutrition, health, and wellbeing will depend on delivering enhanced diets to humankind. This will require instantaneous access to information on food-source quality at key points of agri-food systems. Although laboratory analysis and benchtop NIR spectrometers are regularly used to quantify grain quality, these do not suit all end users, for example, stakeholders in decentralized agri-food chains that are typical in emerging economies. Therefore, we explored benchtop and portable NIR instruments, and the methods that might aid these particular end uses. For this purpose, we generated NIR spectra for 328 grain samples from multiple cereals (finger millet, foxtail millet, maize, pearl millet, and sorghum) with a standard benchtop NIR spectrometer (DS2500, FOSS) and a novel portable NIR-based instrument (HL-EVT5, Hone). We explored classical deterministic methods (via winISI, FOSS), novel machine learning (ML)-driven methods (via Hone Create, Hone), and a convolutional neural network (CNN)-based method for building the calibrations to predict grain protein out of the NIR spectra. All of the tested methods enabled us to build relevant calibrations out of both types of spectra (i.e., R(2) ≥ 0.90, RMSE ≤ 0.91, RPD ≥ 3.08). Generally, the calibration methods integrating the ML techniques tended to enhance the prediction capacity of the model. We also documented that the prediction of grain protein content based on the NIR spectra generated using the novel portable instrument (HL-EVT5, Hone) was highly relevant for quantitative protein predictions (R(2) = 0.91, RMSE = 0.97, RPD = 3.48). Thus, the presented findings lay the foundations for the expanded use of NIR spectroscopy in agricultural research, development, and trade. MDPI 2022-05-13 /pmc/articles/PMC9146900/ /pubmed/35632119 http://dx.doi.org/10.3390/s22103710 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chadalavada, Keerthi Anbazhagan, Krithika Ndour, Adama Choudhary, Sunita Palmer, William Flynn, Jamie R. Mallayee, Srikanth Pothu, Sharada Prasad, Kodukula Venkata Subrahamanya Vara Varijakshapanikar, Padmakumar Jones, Chris S. Kholová, Jana NIR Instruments and Prediction Methods for Rapid Access to Grain Protein Content in Multiple Cereals |
title | NIR Instruments and Prediction Methods for Rapid Access to Grain Protein Content in Multiple Cereals |
title_full | NIR Instruments and Prediction Methods for Rapid Access to Grain Protein Content in Multiple Cereals |
title_fullStr | NIR Instruments and Prediction Methods for Rapid Access to Grain Protein Content in Multiple Cereals |
title_full_unstemmed | NIR Instruments and Prediction Methods for Rapid Access to Grain Protein Content in Multiple Cereals |
title_short | NIR Instruments and Prediction Methods for Rapid Access to Grain Protein Content in Multiple Cereals |
title_sort | nir instruments and prediction methods for rapid access to grain protein content in multiple cereals |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146900/ https://www.ncbi.nlm.nih.gov/pubmed/35632119 http://dx.doi.org/10.3390/s22103710 |
work_keys_str_mv | AT chadalavadakeerthi nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals AT anbazhagankrithika nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals AT ndouradama nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals AT choudharysunita nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals AT palmerwilliam nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals AT flynnjamier nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals AT mallayeesrikanth nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals AT pothusharada nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals AT prasadkodukulavenkatasubrahamanyavara nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals AT varijakshapanikarpadmakumar nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals AT joneschriss nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals AT kholovajana nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals |