Cargando…

Phosphate-Solubilizing Bacteria Isolated from Phosphate Solid Sludge and Their Ability to Solubilize Three Inorganic Phosphate Forms: Calcium, Iron, and Aluminum Phosphates

Biofertilizers are a key component of organic agriculture. Bacterial biofertilizers enhance plant growth through a variety of mechanisms, including soil compound mobilization and phosphate solubilizing bacteria (PSB), which convert insoluble phosphorus to plant-available forms. This specificity of P...

Descripción completa

Detalles Bibliográficos
Autores principales: Aliyat, Fatima Zahra, Maldani, Mohamed, El Guilli, Mohammed, Nassiri, Laila, Ibijbijen, Jamal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147023/
https://www.ncbi.nlm.nih.gov/pubmed/35630425
http://dx.doi.org/10.3390/microorganisms10050980
Descripción
Sumario:Biofertilizers are a key component of organic agriculture. Bacterial biofertilizers enhance plant growth through a variety of mechanisms, including soil compound mobilization and phosphate solubilizing bacteria (PSB), which convert insoluble phosphorus to plant-available forms. This specificity of PSB allows them to be used as biofertilizers in order to increase P availability, which is an immobile element in the soil. The objective of our study is to assess the capacity of PSB strains isolated from phosphate solid sludge to solubilize three forms of inorganic phosphates: tricalcium phosphate (Ca(3)(PO(4))(2)), aluminum phosphate (AlPO(4)), and iron phosphate (FePO(4)), in order to select efficient solubilization strains and use them as biofertilizers in any type of soil, either acidic or calcareous soil. Nine strains were selected and they were evaluated for their ability to dissolve phosphate in the National Botanical Research Institute’s Phosphate (NBRIP) medium with each form of phosphate (Ca(3)(PO(4))(2), AlPO(4), and FePO(4)) as the sole source of phosphorus. The phosphate solubilizing activity was assessed by the vanadate-molybdate method. All the strains tested showed significantly (p ≤ 0.05) the ability to solubilize the three different forms of phosphates, with a variation between strains, and all strains solubilized Ca(3)(PO(4))(2) more than FePO(4) and AlPO(4).