Cargando…
Microfluidic Platforms for the Isolation and Detection of Exosomes: A Brief Review
Extracellular vesicles (EVs) are a group of communication organelles enclosed by a phospholipid bilayer, secreted by all types of cells. The size of these vesicles ranges from 30 to 1000 nm, and they contain a myriad of compounds such as RNA, DNA, proteins, and lipids from their origin cells, offeri...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147043/ https://www.ncbi.nlm.nih.gov/pubmed/35630197 http://dx.doi.org/10.3390/mi13050730 |
_version_ | 1784716711473184768 |
---|---|
author | Raju, Duraichelvan Bathini, Srinivas Badilescu, Simona Ghosh, Anirban Packirisamy, Muthukumaran |
author_facet | Raju, Duraichelvan Bathini, Srinivas Badilescu, Simona Ghosh, Anirban Packirisamy, Muthukumaran |
author_sort | Raju, Duraichelvan |
collection | PubMed |
description | Extracellular vesicles (EVs) are a group of communication organelles enclosed by a phospholipid bilayer, secreted by all types of cells. The size of these vesicles ranges from 30 to 1000 nm, and they contain a myriad of compounds such as RNA, DNA, proteins, and lipids from their origin cells, offering a good source of biomarkers. Exosomes (30 to 100 nm) are a subset of EVs, and their importance in future medicine is beyond any doubt. However, the lack of efficient isolation and detection techniques hinders their practical applications as biomarkers. Versatile and cutting-edge platforms are required to detect and isolate exosomes selectively for further clinical analysis. This review paper focuses on lab-on-chip devices for capturing, detecting, and isolating extracellular vesicles. The first part of the paper discusses the main characteristics of different cell-derived vesicles, EV functions, and their clinical applications. In the second part, various microfluidic platforms suitable for the isolation and detection of exosomes are described, and their performance in terms of yield, sensitivity, and time of analysis is discussed. |
format | Online Article Text |
id | pubmed-9147043 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91470432022-05-29 Microfluidic Platforms for the Isolation and Detection of Exosomes: A Brief Review Raju, Duraichelvan Bathini, Srinivas Badilescu, Simona Ghosh, Anirban Packirisamy, Muthukumaran Micromachines (Basel) Review Extracellular vesicles (EVs) are a group of communication organelles enclosed by a phospholipid bilayer, secreted by all types of cells. The size of these vesicles ranges from 30 to 1000 nm, and they contain a myriad of compounds such as RNA, DNA, proteins, and lipids from their origin cells, offering a good source of biomarkers. Exosomes (30 to 100 nm) are a subset of EVs, and their importance in future medicine is beyond any doubt. However, the lack of efficient isolation and detection techniques hinders their practical applications as biomarkers. Versatile and cutting-edge platforms are required to detect and isolate exosomes selectively for further clinical analysis. This review paper focuses on lab-on-chip devices for capturing, detecting, and isolating extracellular vesicles. The first part of the paper discusses the main characteristics of different cell-derived vesicles, EV functions, and their clinical applications. In the second part, various microfluidic platforms suitable for the isolation and detection of exosomes are described, and their performance in terms of yield, sensitivity, and time of analysis is discussed. MDPI 2022-04-30 /pmc/articles/PMC9147043/ /pubmed/35630197 http://dx.doi.org/10.3390/mi13050730 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Raju, Duraichelvan Bathini, Srinivas Badilescu, Simona Ghosh, Anirban Packirisamy, Muthukumaran Microfluidic Platforms for the Isolation and Detection of Exosomes: A Brief Review |
title | Microfluidic Platforms for the Isolation and Detection of Exosomes: A Brief Review |
title_full | Microfluidic Platforms for the Isolation and Detection of Exosomes: A Brief Review |
title_fullStr | Microfluidic Platforms for the Isolation and Detection of Exosomes: A Brief Review |
title_full_unstemmed | Microfluidic Platforms for the Isolation and Detection of Exosomes: A Brief Review |
title_short | Microfluidic Platforms for the Isolation and Detection of Exosomes: A Brief Review |
title_sort | microfluidic platforms for the isolation and detection of exosomes: a brief review |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147043/ https://www.ncbi.nlm.nih.gov/pubmed/35630197 http://dx.doi.org/10.3390/mi13050730 |
work_keys_str_mv | AT rajuduraichelvan microfluidicplatformsfortheisolationanddetectionofexosomesabriefreview AT bathinisrinivas microfluidicplatformsfortheisolationanddetectionofexosomesabriefreview AT badilescusimona microfluidicplatformsfortheisolationanddetectionofexosomesabriefreview AT ghoshanirban microfluidicplatformsfortheisolationanddetectionofexosomesabriefreview AT packirisamymuthukumaran microfluidicplatformsfortheisolationanddetectionofexosomesabriefreview |