Cargando…
Prediction of Mechanical Properties of Fly-Ash/Slag-Based Geopolymer Concrete Using Ensemble and Non-Ensemble Machine-Learning Techniques
The emission of greenhouse gases and natural-resource depletion caused by the production of ordinary Portland cement (OPC) have a detrimental effect on the environment. Thus, an alternative means is required to produce eco-friendly concrete such as geopolymer concrete (GPC). However, GPC has a compl...
Autores principales: | Amin, Muhammad Nasir, Khan, Kaffayatullah, Javed, Muhammad Faisal, Aslam, Fahid, Qadir, Muhammad Ghulam, Faraz, Muhammad Iftikhar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147112/ https://www.ncbi.nlm.nih.gov/pubmed/35629515 http://dx.doi.org/10.3390/ma15103478 |
Ejemplares similares
-
Ensemble Tree-Based Approach towards Flexural Strength Prediction of FRP Reinforced Concrete Beams
por: Amin, Muhammad Nasir, et al.
Publicado: (2022) -
Multigene Expression Programming Based Forecasting the Hardened Properties of Sustainable Bagasse Ash Concrete
por: Amin, Muhammad Nasir, et al.
Publicado: (2021) -
Prediction of Autogenous Shrinkage of Concrete Incorporating Super Absorbent Polymer and Waste Materials through Individual and Ensemble Machine Learning Approaches
por: Qureshi, Hisham Jahangir, et al.
Publicado: (2022) -
Compressive Strength Estimation of Geopolymer Composites through Novel Computational Approaches
por: Amin, Muhammad Nasir, et al.
Publicado: (2022) -
Compressive Strength Estimation of Fly Ash/Slag Based Green Concrete by Deploying Artificial Intelligence Models
por: Khan, Kaffayatullah, et al.
Publicado: (2022)