Cargando…
Experimental Study on the Characterization of Orientation of Polyester Short Fibers in Rubber Composites by an X-ray Three-Dimensional Microscope
Polyester-short-fiber-reinforced rubber composites have been detected by an X-ray three-dimensional microscope, and then the three-dimensional reconstruction of the image has been carried out to characterize the orientation of polyester short fibers in the composites for the first time. Based on the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147132/ https://www.ncbi.nlm.nih.gov/pubmed/35629752 http://dx.doi.org/10.3390/ma15103726 |
Sumario: | Polyester-short-fiber-reinforced rubber composites have been detected by an X-ray three-dimensional microscope, and then the three-dimensional reconstruction of the image has been carried out to characterize the orientation of polyester short fibers in the composites for the first time. Based on the summary of three traditional methods and mechanisms of characterizing the orientation of polyester short fibers by the numerical parameter method, the direct test method, and the indirect test method, the method and mechanism of the X-ray three-dimensional microscope applied to the orientation characterization of polyester short fibers have been studied. The combination of the center point and threshold segmentation methods has been used to distinguish which fiber section belongs to the same fiber, and the identification of the whole short fiber in different slice images has been realized for the first time. Moreover, Avizo software has been used to realize the three-dimensional reconstruction of a polyester short fiber scanning image. The obtained data have been integrated and the orientation angle and orientation degree have been quantitatively characterized for the first time. This has filled the key technical problem of quantitative characterization of the orientation angle and orientation degree of polyester fibers. The image has been verified by 3Dmed software, and furthermore, the accuracy of the three-dimensional reconstruction results has been verified. |
---|