Cargando…
Tracing and Forecasting Metabolic Indices of Cancer Patients Using Patient-Specific Deep Learning Models
We develop a patient-specific dynamical system model from the time series data of the cancer patient’s metabolic panel taken during the period of cancer treatment and recovery. The model consists of a pair of stacked long short-term memory (LSTM) recurrent neural networks and a fully connected neura...
Autores principales: | Hou, Jianguo, Deng, Jun, Li, Chunyan, Wang, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147215/ https://www.ncbi.nlm.nih.gov/pubmed/35629164 http://dx.doi.org/10.3390/jpm12050742 |
Ejemplares similares
-
Forecasting of Patient-Specific Kidney Transplant Function With a Sequence-to-Sequence Deep Learning Model
por: Van Loon, Elisabet, et al.
Publicado: (2021) -
Forecasting Future Monthly Patient Volume using Deep Learning and Statistical Models
por: Pala, Zeydin, et al.
Publicado: (2023) -
Exchange Rate Forecasting Based on Deep Learning and NSGA-II Models
por: Chen, Jun, et al.
Publicado: (2021) -
Deep learning model for forecasting COVID-19 outbreak in Egypt
por: Marzouk, Mohamed, et al.
Publicado: (2021) -
Towards Interpretable Deep Learning Models for Knowledge Tracing
por: Lu, Yu, et al.
Publicado: (2020)