Cargando…
A Comprehensive Review of Biopolymer Fabrication in Additive Manufacturing Processing for 3D-Tissue-Engineering Scaffolds
The selection of a scaffold-fabrication method becomes challenging due to the variety in manufacturing methods, biomaterials and technical requirements. The design and development of tissue engineering scaffolds depend upon the porosity, which provides interconnected pores, suitable mechanical stren...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147259/ https://www.ncbi.nlm.nih.gov/pubmed/35632000 http://dx.doi.org/10.3390/polym14102119 |
Sumario: | The selection of a scaffold-fabrication method becomes challenging due to the variety in manufacturing methods, biomaterials and technical requirements. The design and development of tissue engineering scaffolds depend upon the porosity, which provides interconnected pores, suitable mechanical strength, and the internal scaffold architecture. The technology of the additive manufacturing (AM) method via photo-polymerization 3D printing is reported to have the capability to fabricate high resolution and finely controlled dimensions of a scaffold. This technology is also easy to operate, low cost and enables fast printing, compared to traditional methods and other additive manufacturing techniques. This article aims to review the potential of the photo-polymerization 3D-printing technique in the fabrication of tissue engineering scaffolds. This review paper also highlights the comprehensive comparative study between photo-polymerization 3D printing with other scaffold fabrication techniques. Various parameter settings that influence mechanical properties, biocompatibility and porosity behavior are also discussed in detail. |
---|