Cargando…
Supervised and Weakly Supervised Deep Learning for Segmentation and Counting of Cotton Bolls Using Proximal Imagery
The total boll count from a plant is one of the most important phenotypic traits for cotton breeding and is also an important factor for growers to estimate the final yield. With the recent advances in deep learning, many supervised learning approaches have been implemented to perform phenotypic tra...
Autores principales: | Adke, Shrinidhi, Li, Changying, Rasheed, Khaled M., Maier, Frederick W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147286/ https://www.ncbi.nlm.nih.gov/pubmed/35632096 http://dx.doi.org/10.3390/s22103688 |
Ejemplares similares
-
Deep graph cut network for weakly-supervised semantic segmentation
por: Feng, Jiapei, et al.
Publicado: (2021) -
A Weakly Supervised Deep Learning Framework for Sorghum Head Detection and Counting
por: Ghosal, Sambuddha, et al.
Publicado: (2019) -
Weakly Supervised Polyp Segmentation in Colonoscopy Images Using Deep Neural Networks
por: Chen, Siwei, et al.
Publicado: (2022) -
Instance Segmentation to Estimate Consumption of Corn Ears by Wild Animals for GMO Preference Tests
por: Adke, Shrinidhi, et al.
Publicado: (2021) -
Self-supervised machine learning for live cell imagery segmentation
por: Robitaille, Michael C., et al.
Publicado: (2022)