Cargando…

3D Printing of Stretchable, Adhesive and Conductive Ti(3)C(2)T(x)-Polyacrylic Acid Hydrogels

Stretchable, adhesive, and conductive hydrogels have been regarded as ideal interfacial materials for seamless and biocompatible integration with the human body. However, existing hydrogels can rarely achieve good mechanical, electrical, and adhesive properties simultaneously, as well as limited pat...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Weijing, Cao, Jie, Wang, Fucheng, Tian, Fajuan, Zheng, Wenqian, Bao, Yuqian, Zhang, Kaiyue, Zhang, Zhilin, Yu, Jiawen, Xu, Jingkun, Liu, Ximei, Lu, Baoyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147333/
https://www.ncbi.nlm.nih.gov/pubmed/35631873
http://dx.doi.org/10.3390/polym14101992
_version_ 1784716781778108416
author Zhao, Weijing
Cao, Jie
Wang, Fucheng
Tian, Fajuan
Zheng, Wenqian
Bao, Yuqian
Zhang, Kaiyue
Zhang, Zhilin
Yu, Jiawen
Xu, Jingkun
Liu, Ximei
Lu, Baoyang
author_facet Zhao, Weijing
Cao, Jie
Wang, Fucheng
Tian, Fajuan
Zheng, Wenqian
Bao, Yuqian
Zhang, Kaiyue
Zhang, Zhilin
Yu, Jiawen
Xu, Jingkun
Liu, Ximei
Lu, Baoyang
author_sort Zhao, Weijing
collection PubMed
description Stretchable, adhesive, and conductive hydrogels have been regarded as ideal interfacial materials for seamless and biocompatible integration with the human body. However, existing hydrogels can rarely achieve good mechanical, electrical, and adhesive properties simultaneously, as well as limited patterning/manufacturing techniques posing severe challenges to bioelectronic research and their practical applications. Herein, we develop a stretchable, adhesive, and conductive Ti(3)C(2)T(x)-polyacrylic acid hydrogel by a simple pre-crosslinking method followed by successive direct ink writing 3D printing. Pre-polymerization of acrylic acid can be initiated by mechanical mixing with Ti(3)C(2)T(x) nanosheet suspension, leading to the formation of viscous 3D printable ink. Secondary free radical polymerization of the ink patterns via 3D printing can achieve a stretchable, adhesive, and conductive Ti(3)C(2)T(x)-polyacrylic acid hydrogel. The as-formed hydrogel exhibits remarkable stretchability (~622%), high electrical conductivity (5.13 S m(−1)), and good adhesion strength on varying substrates. We further demonstrate the capability of facilely printing such hydrogels into complex geometries like mesh and rhombus patterns with high resolution and robust integration.
format Online
Article
Text
id pubmed-9147333
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91473332022-05-29 3D Printing of Stretchable, Adhesive and Conductive Ti(3)C(2)T(x)-Polyacrylic Acid Hydrogels Zhao, Weijing Cao, Jie Wang, Fucheng Tian, Fajuan Zheng, Wenqian Bao, Yuqian Zhang, Kaiyue Zhang, Zhilin Yu, Jiawen Xu, Jingkun Liu, Ximei Lu, Baoyang Polymers (Basel) Article Stretchable, adhesive, and conductive hydrogels have been regarded as ideal interfacial materials for seamless and biocompatible integration with the human body. However, existing hydrogels can rarely achieve good mechanical, electrical, and adhesive properties simultaneously, as well as limited patterning/manufacturing techniques posing severe challenges to bioelectronic research and their practical applications. Herein, we develop a stretchable, adhesive, and conductive Ti(3)C(2)T(x)-polyacrylic acid hydrogel by a simple pre-crosslinking method followed by successive direct ink writing 3D printing. Pre-polymerization of acrylic acid can be initiated by mechanical mixing with Ti(3)C(2)T(x) nanosheet suspension, leading to the formation of viscous 3D printable ink. Secondary free radical polymerization of the ink patterns via 3D printing can achieve a stretchable, adhesive, and conductive Ti(3)C(2)T(x)-polyacrylic acid hydrogel. The as-formed hydrogel exhibits remarkable stretchability (~622%), high electrical conductivity (5.13 S m(−1)), and good adhesion strength on varying substrates. We further demonstrate the capability of facilely printing such hydrogels into complex geometries like mesh and rhombus patterns with high resolution and robust integration. MDPI 2022-05-13 /pmc/articles/PMC9147333/ /pubmed/35631873 http://dx.doi.org/10.3390/polym14101992 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhao, Weijing
Cao, Jie
Wang, Fucheng
Tian, Fajuan
Zheng, Wenqian
Bao, Yuqian
Zhang, Kaiyue
Zhang, Zhilin
Yu, Jiawen
Xu, Jingkun
Liu, Ximei
Lu, Baoyang
3D Printing of Stretchable, Adhesive and Conductive Ti(3)C(2)T(x)-Polyacrylic Acid Hydrogels
title 3D Printing of Stretchable, Adhesive and Conductive Ti(3)C(2)T(x)-Polyacrylic Acid Hydrogels
title_full 3D Printing of Stretchable, Adhesive and Conductive Ti(3)C(2)T(x)-Polyacrylic Acid Hydrogels
title_fullStr 3D Printing of Stretchable, Adhesive and Conductive Ti(3)C(2)T(x)-Polyacrylic Acid Hydrogels
title_full_unstemmed 3D Printing of Stretchable, Adhesive and Conductive Ti(3)C(2)T(x)-Polyacrylic Acid Hydrogels
title_short 3D Printing of Stretchable, Adhesive and Conductive Ti(3)C(2)T(x)-Polyacrylic Acid Hydrogels
title_sort 3d printing of stretchable, adhesive and conductive ti(3)c(2)t(x)-polyacrylic acid hydrogels
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147333/
https://www.ncbi.nlm.nih.gov/pubmed/35631873
http://dx.doi.org/10.3390/polym14101992
work_keys_str_mv AT zhaoweijing 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels
AT caojie 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels
AT wangfucheng 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels
AT tianfajuan 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels
AT zhengwenqian 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels
AT baoyuqian 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels
AT zhangkaiyue 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels
AT zhangzhilin 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels
AT yujiawen 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels
AT xujingkun 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels
AT liuximei 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels
AT lubaoyang 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels