Cargando…
3D Printing of Stretchable, Adhesive and Conductive Ti(3)C(2)T(x)-Polyacrylic Acid Hydrogels
Stretchable, adhesive, and conductive hydrogels have been regarded as ideal interfacial materials for seamless and biocompatible integration with the human body. However, existing hydrogels can rarely achieve good mechanical, electrical, and adhesive properties simultaneously, as well as limited pat...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147333/ https://www.ncbi.nlm.nih.gov/pubmed/35631873 http://dx.doi.org/10.3390/polym14101992 |
_version_ | 1784716781778108416 |
---|---|
author | Zhao, Weijing Cao, Jie Wang, Fucheng Tian, Fajuan Zheng, Wenqian Bao, Yuqian Zhang, Kaiyue Zhang, Zhilin Yu, Jiawen Xu, Jingkun Liu, Ximei Lu, Baoyang |
author_facet | Zhao, Weijing Cao, Jie Wang, Fucheng Tian, Fajuan Zheng, Wenqian Bao, Yuqian Zhang, Kaiyue Zhang, Zhilin Yu, Jiawen Xu, Jingkun Liu, Ximei Lu, Baoyang |
author_sort | Zhao, Weijing |
collection | PubMed |
description | Stretchable, adhesive, and conductive hydrogels have been regarded as ideal interfacial materials for seamless and biocompatible integration with the human body. However, existing hydrogels can rarely achieve good mechanical, electrical, and adhesive properties simultaneously, as well as limited patterning/manufacturing techniques posing severe challenges to bioelectronic research and their practical applications. Herein, we develop a stretchable, adhesive, and conductive Ti(3)C(2)T(x)-polyacrylic acid hydrogel by a simple pre-crosslinking method followed by successive direct ink writing 3D printing. Pre-polymerization of acrylic acid can be initiated by mechanical mixing with Ti(3)C(2)T(x) nanosheet suspension, leading to the formation of viscous 3D printable ink. Secondary free radical polymerization of the ink patterns via 3D printing can achieve a stretchable, adhesive, and conductive Ti(3)C(2)T(x)-polyacrylic acid hydrogel. The as-formed hydrogel exhibits remarkable stretchability (~622%), high electrical conductivity (5.13 S m(−1)), and good adhesion strength on varying substrates. We further demonstrate the capability of facilely printing such hydrogels into complex geometries like mesh and rhombus patterns with high resolution and robust integration. |
format | Online Article Text |
id | pubmed-9147333 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91473332022-05-29 3D Printing of Stretchable, Adhesive and Conductive Ti(3)C(2)T(x)-Polyacrylic Acid Hydrogels Zhao, Weijing Cao, Jie Wang, Fucheng Tian, Fajuan Zheng, Wenqian Bao, Yuqian Zhang, Kaiyue Zhang, Zhilin Yu, Jiawen Xu, Jingkun Liu, Ximei Lu, Baoyang Polymers (Basel) Article Stretchable, adhesive, and conductive hydrogels have been regarded as ideal interfacial materials for seamless and biocompatible integration with the human body. However, existing hydrogels can rarely achieve good mechanical, electrical, and adhesive properties simultaneously, as well as limited patterning/manufacturing techniques posing severe challenges to bioelectronic research and their practical applications. Herein, we develop a stretchable, adhesive, and conductive Ti(3)C(2)T(x)-polyacrylic acid hydrogel by a simple pre-crosslinking method followed by successive direct ink writing 3D printing. Pre-polymerization of acrylic acid can be initiated by mechanical mixing with Ti(3)C(2)T(x) nanosheet suspension, leading to the formation of viscous 3D printable ink. Secondary free radical polymerization of the ink patterns via 3D printing can achieve a stretchable, adhesive, and conductive Ti(3)C(2)T(x)-polyacrylic acid hydrogel. The as-formed hydrogel exhibits remarkable stretchability (~622%), high electrical conductivity (5.13 S m(−1)), and good adhesion strength on varying substrates. We further demonstrate the capability of facilely printing such hydrogels into complex geometries like mesh and rhombus patterns with high resolution and robust integration. MDPI 2022-05-13 /pmc/articles/PMC9147333/ /pubmed/35631873 http://dx.doi.org/10.3390/polym14101992 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhao, Weijing Cao, Jie Wang, Fucheng Tian, Fajuan Zheng, Wenqian Bao, Yuqian Zhang, Kaiyue Zhang, Zhilin Yu, Jiawen Xu, Jingkun Liu, Ximei Lu, Baoyang 3D Printing of Stretchable, Adhesive and Conductive Ti(3)C(2)T(x)-Polyacrylic Acid Hydrogels |
title | 3D Printing of Stretchable, Adhesive and Conductive Ti(3)C(2)T(x)-Polyacrylic Acid Hydrogels |
title_full | 3D Printing of Stretchable, Adhesive and Conductive Ti(3)C(2)T(x)-Polyacrylic Acid Hydrogels |
title_fullStr | 3D Printing of Stretchable, Adhesive and Conductive Ti(3)C(2)T(x)-Polyacrylic Acid Hydrogels |
title_full_unstemmed | 3D Printing of Stretchable, Adhesive and Conductive Ti(3)C(2)T(x)-Polyacrylic Acid Hydrogels |
title_short | 3D Printing of Stretchable, Adhesive and Conductive Ti(3)C(2)T(x)-Polyacrylic Acid Hydrogels |
title_sort | 3d printing of stretchable, adhesive and conductive ti(3)c(2)t(x)-polyacrylic acid hydrogels |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147333/ https://www.ncbi.nlm.nih.gov/pubmed/35631873 http://dx.doi.org/10.3390/polym14101992 |
work_keys_str_mv | AT zhaoweijing 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels AT caojie 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels AT wangfucheng 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels AT tianfajuan 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels AT zhengwenqian 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels AT baoyuqian 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels AT zhangkaiyue 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels AT zhangzhilin 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels AT yujiawen 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels AT xujingkun 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels AT liuximei 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels AT lubaoyang 3dprintingofstretchableadhesiveandconductiveti3c2txpolyacrylicacidhydrogels |