Cargando…
Comparison of Prediction Models Based on Machine Learning for the Compressive Strength Estimation of Recycled Aggregate Concrete
Numerous tests are used to determine the performance of concrete, but compressive strength (CS) is usually regarded as the most important. The recycled aggregate concrete (RAC) exhibits lower CS compared to natural aggregate concrete. Several variables, such as the water-cement ratio, the strength o...
Autores principales: | Khan, Kaffayatullah, Ahmad, Waqas, Amin, Muhammad Nasir, Aslam, Fahid, Ahmad, Ayaz, Al-Faiad, Majdi Adel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147385/ https://www.ncbi.nlm.nih.gov/pubmed/35629456 http://dx.doi.org/10.3390/ma15103430 |
Ejemplares similares
-
Assessment of Artificial Intelligence Strategies to Estimate the Strength of Geopolymer Composites and Influence of Input Parameters
por: Khan, Kaffayatullah, et al.
Publicado: (2022) -
Application of Ensemble Machine Learning Methods to Estimate the Compressive Strength of Fiber-Reinforced Nano-Silica Modified Concrete
por: Anjum, Madiha, et al.
Publicado: (2022) -
Split Tensile Strength Prediction of Recycled Aggregate-Based Sustainable Concrete Using Artificial Intelligence Methods
por: Amin, Muhammad Nasir, et al.
Publicado: (2022) -
Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms
por: Ahmad, Ayaz, et al.
Publicado: (2021) -
Compressive Strength Estimation of Steel-Fiber-Reinforced Concrete and Raw Material Interactions Using Advanced Algorithms
por: Khan, Kaffayatullah, et al.
Publicado: (2022)