Cargando…

The Applications of Artificial Intelligence in Cardiovascular Magnetic Resonance—A Comprehensive Review

Cardiovascular disease remains an integral field on which new research in both the biomedical and technological fields is based, as it remains the leading cause of mortality and morbidity worldwide. However, despite the progress of cardiac imaging techniques, the heart remains a challenging organ to...

Descripción completa

Detalles Bibliográficos
Autores principales: Argentiero, Adriana, Muscogiuri, Giuseppe, Rabbat, Mark G., Martini, Chiara, Soldato, Nicolò, Basile, Paolo, Baggiano, Andrea, Mushtaq, Saima, Fusini, Laura, Mancini, Maria Elisabetta, Gaibazzi, Nicola, Santobuono, Vincenzo Ezio, Sironi, Sandro, Pontone, Gianluca, Guaricci, Andrea Igoren
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147423/
https://www.ncbi.nlm.nih.gov/pubmed/35628992
http://dx.doi.org/10.3390/jcm11102866
Descripción
Sumario:Cardiovascular disease remains an integral field on which new research in both the biomedical and technological fields is based, as it remains the leading cause of mortality and morbidity worldwide. However, despite the progress of cardiac imaging techniques, the heart remains a challenging organ to study. Artificial intelligence (AI) has emerged as one of the major innovations in the field of diagnostic imaging, with a dramatic impact on cardiovascular magnetic resonance imaging (CMR). AI will be increasingly present in the medical world, with strong potential for greater diagnostic efficiency and accuracy. Regarding the use of AI in image acquisition and reconstruction, the main role was to reduce the time of image acquisition and analysis, one of the biggest challenges concerning magnetic resonance; moreover, it has been seen to play a role in the automatic correction of artifacts. The use of these techniques in image segmentation has allowed automatic and accurate quantification of the volumes and masses of the left and right ventricles, with occasional need for manual correction. Furthermore, AI can be a useful tool to directly help the clinician in the diagnosis and derivation of prognostic information of cardiovascular diseases. This review addresses the applications and future prospects of AI in CMR imaging, from image acquisition and reconstruction to image segmentation, tissue characterization, diagnostic evaluation, and prognostication.