Cargando…
Weakly Supervised Tumor Detection in PET Using Class Response for Treatment Outcome Prediction
It is proven that radiomic characteristics extracted from the tumor region are predictive. The first step in radiomic analysis is the segmentation of the lesion. However, this task is time consuming and requires a highly trained physician. This process could be automated using computer-aided detecti...
Autores principales: | Amyar, Amine, Modzelewski, Romain, Vera, Pierre, Morard, Vincent, Ruan, Su |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147496/ https://www.ncbi.nlm.nih.gov/pubmed/35621894 http://dx.doi.org/10.3390/jimaging8050130 |
Ejemplares similares
-
Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation
por: Amyar, Amine, et al.
Publicado: (2020) -
Weakly supervised segmentation of tumor lesions in PET-CT hybrid imaging
por: Früh, Marcel, et al.
Publicado: (2021) -
Predictive value of initial FDG-PET features for treatment response and survival in esophageal cancer patients treated with chemo-radiation therapy using a random forest classifier
por: Desbordes, Paul, et al.
Publicado: (2017) -
Weakly Supervised Violence Detection in Surveillance Video
por: Choqueluque-Roman, David, et al.
Publicado: (2022) -
Practical Weak Supervision
por: Tok, Wee, et al.
Publicado: (2021)