Cargando…

Optical Resolution of Two Pharmaceutical Bases with Various Uses of Tartaric Acid Derivatives and Their Sodium Salts: Racemic Ephedrine and Chloramphenicol Base

The optically active dibenzoyltartaric acid, tartaric acid, and its sodium salts were successfully applied to the optical resolution of (1R,2S)(1S,2R)-2-(methylamino)-1-phenylpropan-1-ol (EPH) and (1R,2R)(1S,2S)-2-amino-1-(4-nitrophenyl)propane-1,3-diol (AD) as resolving agents. It was observed that...

Descripción completa

Detalles Bibliográficos
Autores principales: Bánhegyi, Dorottya Fruzsina, Fogassy, Elemér, Madarász, János, Pálovics, Emese
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147544/
https://www.ncbi.nlm.nih.gov/pubmed/35630614
http://dx.doi.org/10.3390/molecules27103134
Descripción
Sumario:The optically active dibenzoyltartaric acid, tartaric acid, and its sodium salts were successfully applied to the optical resolution of (1R,2S)(1S,2R)-2-(methylamino)-1-phenylpropan-1-ol (EPH) and (1R,2R)(1S,2S)-2-amino-1-(4-nitrophenyl)propane-1,3-diol (AD) as resolving agents. It was observed that both compounds’ resolution using a mixture of salts of quasi-racemic resolving agents showed a change in chiral recognition under the same conditions compared to the result of the use of the single enantiomeric resolving agent. The changes are followed by detailed analytical (XRD, FTIR, and DSC) studies. Meanwhile, the DASH indexing software package was also tested on powder XRD patterns of pure initial materials and intermediate salt samples of high diastereomeric excess.