Cargando…
Theoretical Study on Electronic, Magnetic and Optical Properties of Non-Metal Atoms Adsorbed onto Germanium Carbide
Nine kinds of non-metal atoms adsorbed into germanium carbide (NM-GeC) systems wereare investigated by first-principles calculations. The results show that the most stable adsorption positions vary with the NM atoms, and C-GeC exhibits the strongest adsorption. The adsorption of NM atoms causes chan...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147664/ https://www.ncbi.nlm.nih.gov/pubmed/35630933 http://dx.doi.org/10.3390/nano12101712 |
Sumario: | Nine kinds of non-metal atoms adsorbed into germanium carbide (NM-GeC) systems wereare investigated by first-principles calculations. The results show that the most stable adsorption positions vary with the NM atoms, and C-GeC exhibits the strongest adsorption. The adsorption of NM atoms causes changes in the electronic, optical and magnetic properties of the GeC system. F- and Cl-GeC turn into magnetic metals, P-GeC becomes a half-metal and H- and B-GeC appear as non-magnetic metals. Although C- and O-GeC remain non-magnetic semiconductors, N-GeC presents the behaviors of a magnetic semiconductor. Work function decreases in H-, B- and N-SiC, reaching a minimum of 3.37 eV in H-GeC, which is 78.9% of the pristine GeC. In the visible light region, redshifts occur in the absorption spectrum of C-GeC , with strong absorption in the wavelength range from 400 to 600 nm. Our analysis shows that the magnetism in semiconducting NM-GeC is attributed to the spinning state of the unbonded electrons of the NM atoms. Our study demonstrates the applications of NM-GeC in spintronics, optoelectronics and photovoltaic cells, and it provides a reference for analyzing magnetism in semiconducting NM materials. |
---|