Cargando…
A Study and Modeling of Bifidobacterium and Bacillus Coculture Continuous Fermentation under Distal Intestine Simulated Conditions
The diversity and the stability of the microbial community are associated with microecological interactions between its members. Antagonism is one type of interaction, which particularly determines the benefits that probiotics bring to host health by suppressing opportunistic pathogens and microbial...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147766/ https://www.ncbi.nlm.nih.gov/pubmed/35630373 http://dx.doi.org/10.3390/microorganisms10050929 |
_version_ | 1784716888213815296 |
---|---|
author | Evdokimova, Svetlana A. Karetkin, Boris A. Guseva, Elena V. Gordienko, Maria G. Khabibulina, Natalia V. Panfilov, Victor I. Menshutina, Natalia V. Gradova, Nina B. |
author_facet | Evdokimova, Svetlana A. Karetkin, Boris A. Guseva, Elena V. Gordienko, Maria G. Khabibulina, Natalia V. Panfilov, Victor I. Menshutina, Natalia V. Gradova, Nina B. |
author_sort | Evdokimova, Svetlana A. |
collection | PubMed |
description | The diversity and the stability of the microbial community are associated with microecological interactions between its members. Antagonism is one type of interaction, which particularly determines the benefits that probiotics bring to host health by suppressing opportunistic pathogens and microbial contaminants in food. Mathematical models allow for quantitatively predicting intrapopulation relationships. The aim of this study was to create predictive models for bacterial contamination outcomes depending on the probiotic antagonism and prebiotic concentration. This should allow an improvement in the screening of synbiotic composition for preventing gut microbial infections. The functional model (fermentation) was based on a three-stage continuous system, and the distal colon section (N(2), pH 6.8, flow rate 0.04 h(–1)) was simulated. The strains Bifidobacterium adolescentis ATCC 15703 and Bacillus cereus ATCC 9634 were chosen as the model probiotic and pathogen. Oligofructose Orafti P95 (OF) was used as the prebiotic at concentrations of 2, 5, 7, 10, 12, and 15 g/L of the medium. In the first stage, the system was inoculated with Bifidobacterium, and a dynamic equilibrium (Bifidobacterium count, lactic, and acetic acids) was achieved. Then, the system was contaminated with a 3-day Bacillus suspension (spores). The microbial count, as well as the concentration of acids and residual carbohydrates, was measured. A Bacillus monoculture was studied as a control. The stationary count of Bacillus in monoculture was markedly higher. An increase (up to 8 h) in the lag phase was observed for higher prebiotic concentrations. The specific growth rate in the exponential phase varied at different OF concentrations. Thus, the OF concentration influenced two key events of bacterial infection, which together determine when the maximal pathogen count will be reached. The mathematical models were developed, and their accuracies were acceptable for Bifidobacterium (relative errors ranging from 1.00% to 2.58%) and Bacillus (relative errors ranging from 0.74% to 2.78%) count prediction. |
format | Online Article Text |
id | pubmed-9147766 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91477662022-05-29 A Study and Modeling of Bifidobacterium and Bacillus Coculture Continuous Fermentation under Distal Intestine Simulated Conditions Evdokimova, Svetlana A. Karetkin, Boris A. Guseva, Elena V. Gordienko, Maria G. Khabibulina, Natalia V. Panfilov, Victor I. Menshutina, Natalia V. Gradova, Nina B. Microorganisms Article The diversity and the stability of the microbial community are associated with microecological interactions between its members. Antagonism is one type of interaction, which particularly determines the benefits that probiotics bring to host health by suppressing opportunistic pathogens and microbial contaminants in food. Mathematical models allow for quantitatively predicting intrapopulation relationships. The aim of this study was to create predictive models for bacterial contamination outcomes depending on the probiotic antagonism and prebiotic concentration. This should allow an improvement in the screening of synbiotic composition for preventing gut microbial infections. The functional model (fermentation) was based on a three-stage continuous system, and the distal colon section (N(2), pH 6.8, flow rate 0.04 h(–1)) was simulated. The strains Bifidobacterium adolescentis ATCC 15703 and Bacillus cereus ATCC 9634 were chosen as the model probiotic and pathogen. Oligofructose Orafti P95 (OF) was used as the prebiotic at concentrations of 2, 5, 7, 10, 12, and 15 g/L of the medium. In the first stage, the system was inoculated with Bifidobacterium, and a dynamic equilibrium (Bifidobacterium count, lactic, and acetic acids) was achieved. Then, the system was contaminated with a 3-day Bacillus suspension (spores). The microbial count, as well as the concentration of acids and residual carbohydrates, was measured. A Bacillus monoculture was studied as a control. The stationary count of Bacillus in monoculture was markedly higher. An increase (up to 8 h) in the lag phase was observed for higher prebiotic concentrations. The specific growth rate in the exponential phase varied at different OF concentrations. Thus, the OF concentration influenced two key events of bacterial infection, which together determine when the maximal pathogen count will be reached. The mathematical models were developed, and their accuracies were acceptable for Bifidobacterium (relative errors ranging from 1.00% to 2.58%) and Bacillus (relative errors ranging from 0.74% to 2.78%) count prediction. MDPI 2022-04-28 /pmc/articles/PMC9147766/ /pubmed/35630373 http://dx.doi.org/10.3390/microorganisms10050929 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Evdokimova, Svetlana A. Karetkin, Boris A. Guseva, Elena V. Gordienko, Maria G. Khabibulina, Natalia V. Panfilov, Victor I. Menshutina, Natalia V. Gradova, Nina B. A Study and Modeling of Bifidobacterium and Bacillus Coculture Continuous Fermentation under Distal Intestine Simulated Conditions |
title | A Study and Modeling of Bifidobacterium and Bacillus Coculture Continuous Fermentation under Distal Intestine Simulated Conditions |
title_full | A Study and Modeling of Bifidobacterium and Bacillus Coculture Continuous Fermentation under Distal Intestine Simulated Conditions |
title_fullStr | A Study and Modeling of Bifidobacterium and Bacillus Coculture Continuous Fermentation under Distal Intestine Simulated Conditions |
title_full_unstemmed | A Study and Modeling of Bifidobacterium and Bacillus Coculture Continuous Fermentation under Distal Intestine Simulated Conditions |
title_short | A Study and Modeling of Bifidobacterium and Bacillus Coculture Continuous Fermentation under Distal Intestine Simulated Conditions |
title_sort | study and modeling of bifidobacterium and bacillus coculture continuous fermentation under distal intestine simulated conditions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147766/ https://www.ncbi.nlm.nih.gov/pubmed/35630373 http://dx.doi.org/10.3390/microorganisms10050929 |
work_keys_str_mv | AT evdokimovasvetlanaa astudyandmodelingofbifidobacteriumandbacilluscoculturecontinuousfermentationunderdistalintestinesimulatedconditions AT karetkinborisa astudyandmodelingofbifidobacteriumandbacilluscoculturecontinuousfermentationunderdistalintestinesimulatedconditions AT gusevaelenav astudyandmodelingofbifidobacteriumandbacilluscoculturecontinuousfermentationunderdistalintestinesimulatedconditions AT gordienkomariag astudyandmodelingofbifidobacteriumandbacilluscoculturecontinuousfermentationunderdistalintestinesimulatedconditions AT khabibulinanataliav astudyandmodelingofbifidobacteriumandbacilluscoculturecontinuousfermentationunderdistalintestinesimulatedconditions AT panfilovvictori astudyandmodelingofbifidobacteriumandbacilluscoculturecontinuousfermentationunderdistalintestinesimulatedconditions AT menshutinanataliav astudyandmodelingofbifidobacteriumandbacilluscoculturecontinuousfermentationunderdistalintestinesimulatedconditions AT gradovaninab astudyandmodelingofbifidobacteriumandbacilluscoculturecontinuousfermentationunderdistalintestinesimulatedconditions AT evdokimovasvetlanaa studyandmodelingofbifidobacteriumandbacilluscoculturecontinuousfermentationunderdistalintestinesimulatedconditions AT karetkinborisa studyandmodelingofbifidobacteriumandbacilluscoculturecontinuousfermentationunderdistalintestinesimulatedconditions AT gusevaelenav studyandmodelingofbifidobacteriumandbacilluscoculturecontinuousfermentationunderdistalintestinesimulatedconditions AT gordienkomariag studyandmodelingofbifidobacteriumandbacilluscoculturecontinuousfermentationunderdistalintestinesimulatedconditions AT khabibulinanataliav studyandmodelingofbifidobacteriumandbacilluscoculturecontinuousfermentationunderdistalintestinesimulatedconditions AT panfilovvictori studyandmodelingofbifidobacteriumandbacilluscoculturecontinuousfermentationunderdistalintestinesimulatedconditions AT menshutinanataliav studyandmodelingofbifidobacteriumandbacilluscoculturecontinuousfermentationunderdistalintestinesimulatedconditions AT gradovaninab studyandmodelingofbifidobacteriumandbacilluscoculturecontinuousfermentationunderdistalintestinesimulatedconditions |