Cargando…
New Isolated Shrimp (Litopenaeus setiferus) Chitosan-Based Films Loaded with Fly Ash for Antibacterial Evaluation
New three fabricated chitosan (CS) loaded with fly ash (FA) films were developed in this study. The shell waste of white shrimp was used as a precursor for the isolation of chitin and converted into chitosan by carrying out a deacetylation process. The formation of chitosan was conducted by various...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147801/ https://www.ncbi.nlm.nih.gov/pubmed/35631982 http://dx.doi.org/10.3390/polym14102099 |
Sumario: | New three fabricated chitosan (CS) loaded with fly ash (FA) films were developed in this study. The shell waste of white shrimp was used as a precursor for the isolation of chitin and converted into chitosan by carrying out a deacetylation process. The formation of chitosan was conducted by various preparation steps deproteinization, demineralization, and deacetylation. The degree of deacetylation was found to be 95.2%. The obtained chitosan was used to prepare three different chitosan loaded-fly ash films. The prepared films contained various fly ash: chitosan ratios (2:1, FA-CSF1), (1:1, FA-CSF2), and (1:2, FA-CSF3). The obtained films were characterized using FTIR, XRD, and SEM. The micrograph images of the formed films showed spherical particles with an average size of 10 µm. The surface area, adsorption-desorption properties, thermal stability, and water/fat binding features of the fabricated chitosan films were studied. The results revealed that the prepared films displayed typical BET graphs with surface areas ranging from 2.436 m(2) g(−1) to 8.490 m(2) g(−1). The fabricated FA-CSF films also showed high thermal stability at temperatures up to 284.9 °C and excellent water/fat binding capacities. The antibacterial potential of the designed films was screened against E. coli (Gram-negative) and B. cereus (Gram-positive) bacterial strains. The tested solution of CS (1%) exhibited inhibition zones for E. coli and B. cereus as 18.51 mm and 14.81 mm, respectively, while in FA solution (1%), the inhibition zones were found to be 10.16 mm, and 13.57 mm, respectively. The results encourage and open up the new and promising areas of research for applying chitosan extracted from waste materials in biological applications. |
---|