Cargando…

Wave Dissipation and Energy-Absorption Characteristics of Wave-Absorbing Metal Plates with Different Aperture Sizes and Thicknesses under True-Triaxial Static-Dynamic-Coupling Loading

Deep rock masses exist in a complex environment with multi-field coupling; therefore, it is necessary to develop a true-triaxial static-dynamic-coupling loading test machine to explore their characteristics and mechanical response mechanism. To meet the test requirements of true-triaxial loading and...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Linqi, Wu, Xin, Zeng, Sijian, Li, Xibing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147971/
https://www.ncbi.nlm.nih.gov/pubmed/35629521
http://dx.doi.org/10.3390/ma15103493
_version_ 1784716938349379584
author Huang, Linqi
Wu, Xin
Zeng, Sijian
Li, Xibing
author_facet Huang, Linqi
Wu, Xin
Zeng, Sijian
Li, Xibing
author_sort Huang, Linqi
collection PubMed
description Deep rock masses exist in a complex environment with multi-field coupling; therefore, it is necessary to develop a true-triaxial static-dynamic-coupling loading test machine to explore their characteristics and mechanical response mechanism. To meet the test requirements of true-triaxial loading and strong disturbance, a wave-absorbing metal plate was selected as the boundary material between the granite and transmission end, and the modified SHPB was used to perform static-dynamic-coupling loading tests. In this study, two series of experiments on wave- absorbing metal plates were conducted, which were fixed aperture sizes with different thicknesses and fixed thicknesses with different aperture sizes. The static-dynamic-coupling loading tests on each aperture size and plate thickness were carried out under the condition of equal energy impact. The effects of the aperture size and plate thickness on the incident- and reflection-stress curves, reflectivity, energy consumption law, energy evolution, and other mechanical properties of the wave-absorbing metal plate materials were studied. The results show that the peak stress and reflectivity decrease with increasing aperture size and plate thickness, and the influence of the thickness is greater than that of the aperture size. The energy-absorption rate of the wave-absorbing metal plate increased with increasing thickness and aperture size and was maximized when the aperture size and thickness were 6–7 mm and 3–4 mm, respectively. The variation trend of the energy reflectance is opposite to that of the energy absorption and reaches a minimum when the aperture size is 6–7 mm and plate thickness is 3–4 mm. The energy transmittance of the wave-absorbing metal plate fluctuated in a stable range, but the variation range was less obvious compared to that of the energy-absorption rate.
format Online
Article
Text
id pubmed-9147971
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91479712022-05-29 Wave Dissipation and Energy-Absorption Characteristics of Wave-Absorbing Metal Plates with Different Aperture Sizes and Thicknesses under True-Triaxial Static-Dynamic-Coupling Loading Huang, Linqi Wu, Xin Zeng, Sijian Li, Xibing Materials (Basel) Article Deep rock masses exist in a complex environment with multi-field coupling; therefore, it is necessary to develop a true-triaxial static-dynamic-coupling loading test machine to explore their characteristics and mechanical response mechanism. To meet the test requirements of true-triaxial loading and strong disturbance, a wave-absorbing metal plate was selected as the boundary material between the granite and transmission end, and the modified SHPB was used to perform static-dynamic-coupling loading tests. In this study, two series of experiments on wave- absorbing metal plates were conducted, which were fixed aperture sizes with different thicknesses and fixed thicknesses with different aperture sizes. The static-dynamic-coupling loading tests on each aperture size and plate thickness were carried out under the condition of equal energy impact. The effects of the aperture size and plate thickness on the incident- and reflection-stress curves, reflectivity, energy consumption law, energy evolution, and other mechanical properties of the wave-absorbing metal plate materials were studied. The results show that the peak stress and reflectivity decrease with increasing aperture size and plate thickness, and the influence of the thickness is greater than that of the aperture size. The energy-absorption rate of the wave-absorbing metal plate increased with increasing thickness and aperture size and was maximized when the aperture size and thickness were 6–7 mm and 3–4 mm, respectively. The variation trend of the energy reflectance is opposite to that of the energy absorption and reaches a minimum when the aperture size is 6–7 mm and plate thickness is 3–4 mm. The energy transmittance of the wave-absorbing metal plate fluctuated in a stable range, but the variation range was less obvious compared to that of the energy-absorption rate. MDPI 2022-05-12 /pmc/articles/PMC9147971/ /pubmed/35629521 http://dx.doi.org/10.3390/ma15103493 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Huang, Linqi
Wu, Xin
Zeng, Sijian
Li, Xibing
Wave Dissipation and Energy-Absorption Characteristics of Wave-Absorbing Metal Plates with Different Aperture Sizes and Thicknesses under True-Triaxial Static-Dynamic-Coupling Loading
title Wave Dissipation and Energy-Absorption Characteristics of Wave-Absorbing Metal Plates with Different Aperture Sizes and Thicknesses under True-Triaxial Static-Dynamic-Coupling Loading
title_full Wave Dissipation and Energy-Absorption Characteristics of Wave-Absorbing Metal Plates with Different Aperture Sizes and Thicknesses under True-Triaxial Static-Dynamic-Coupling Loading
title_fullStr Wave Dissipation and Energy-Absorption Characteristics of Wave-Absorbing Metal Plates with Different Aperture Sizes and Thicknesses under True-Triaxial Static-Dynamic-Coupling Loading
title_full_unstemmed Wave Dissipation and Energy-Absorption Characteristics of Wave-Absorbing Metal Plates with Different Aperture Sizes and Thicknesses under True-Triaxial Static-Dynamic-Coupling Loading
title_short Wave Dissipation and Energy-Absorption Characteristics of Wave-Absorbing Metal Plates with Different Aperture Sizes and Thicknesses under True-Triaxial Static-Dynamic-Coupling Loading
title_sort wave dissipation and energy-absorption characteristics of wave-absorbing metal plates with different aperture sizes and thicknesses under true-triaxial static-dynamic-coupling loading
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147971/
https://www.ncbi.nlm.nih.gov/pubmed/35629521
http://dx.doi.org/10.3390/ma15103493
work_keys_str_mv AT huanglinqi wavedissipationandenergyabsorptioncharacteristicsofwaveabsorbingmetalplateswithdifferentaperturesizesandthicknessesundertruetriaxialstaticdynamiccouplingloading
AT wuxin wavedissipationandenergyabsorptioncharacteristicsofwaveabsorbingmetalplateswithdifferentaperturesizesandthicknessesundertruetriaxialstaticdynamiccouplingloading
AT zengsijian wavedissipationandenergyabsorptioncharacteristicsofwaveabsorbingmetalplateswithdifferentaperturesizesandthicknessesundertruetriaxialstaticdynamiccouplingloading
AT lixibing wavedissipationandenergyabsorptioncharacteristicsofwaveabsorbingmetalplateswithdifferentaperturesizesandthicknessesundertruetriaxialstaticdynamiccouplingloading