Cargando…
Multi-Sensor Fusion by CWT-PARAFAC-IPSO-SVM for Intelligent Mechanical Fault Diagnosis
A new method of multi-sensor signal analysis for fault diagnosis of centrifugal pump based on parallel factor analysis (PARAFAC) and support vector machine (SVM) is proposed. The single-channel vibration signal is analyzed by Continuous Wavelet Transform (CWT) to construct the time–frequency represe...
Autores principales: | Chen, Hanxin, Li, Shaoyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147989/ https://www.ncbi.nlm.nih.gov/pubmed/35632056 http://dx.doi.org/10.3390/s22103647 |
Ejemplares similares
-
The Identification of ECG Signals Using WT-UKF and IPSO-SVM
por: Li, Ning, et al.
Publicado: (2022) -
Research on lung nodule recognition algorithm based on deep feature fusion and MKL-SVM-IPSO
por: Li, Yang, et al.
Publicado: (2022) -
A new intelligent bearing fault diagnosis model based on triplet network and SVM
por: Yang, Kaisi, et al.
Publicado: (2022) -
Multi-Sensor Fault Diagnosis Based on Time Series in an Intelligent Mechanical System
por: Xu, Zhuoran, et al.
Publicado: (2022) -
A Novel Deep Learning Method for Intelligent Fault Diagnosis of Rotating Machinery Based on Improved CNN-SVM and Multichannel Data Fusion
por: Gong, Wenfeng, et al.
Publicado: (2019)