Cargando…

Identification and Characterization of Antioxidant Enzyme Genes in Parasitoid Aphelinus asychis (Hymenoptera: Aphelinidae) and Expression Profiling Analysis under Temperature Stress

SIMPLE SUMMARY: High temperature affects the control efficiency of Aphelinus asychis, an important parasitic natural enemy of aphids. Antioxidative enzymes can protect organisms against oxidative damage by eliminating excess reactive oxygen species (ROS). This study identified 14 genes belonging to...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xiang, Fu, Zhi-Xiao, Kang, Zhi-Wei, Li, Hao, Liu, Tong-Xian, Wang, Dun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148002/
https://www.ncbi.nlm.nih.gov/pubmed/35621782
http://dx.doi.org/10.3390/insects13050447
Descripción
Sumario:SIMPLE SUMMARY: High temperature affects the control efficiency of Aphelinus asychis, an important parasitic natural enemy of aphids. Antioxidative enzymes can protect organisms against oxidative damage by eliminating excess reactive oxygen species (ROS). This study identified 14 genes belonging to four classes of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidases (POD), and glutathione-S-transferase (GST). The results showed that the expression levels and enzymatic activities of most antioxidant enzyme genes are significantly induced by high temperature, which indicates that antioxidant enzymes increase the resistance of A. asychis to lethal high temperature. Taken together, this study enriches the understanding of the molecular mechanisms of resistance of A. asychis to environmental high temperatures. ABSTRACT: It is well known that high temperature, a typically negative environmental factor, reduces the parasitism of a parasitoid. Generally, high temperature causes the rapid overproduction of reactive oxygen species (ROS) in organisms, and antioxidative enzymes participate in the process of resisting environmental stress by eliminating excess ROS. In the present study, we identify two superoxide dismutase (SOD), one catalase (CAT), six peroxidases (POD), and five glutathione-S-transferase (GST) genes; and the survival rate and antioxidative enzyme patterns under short-term high temperature exposure of the parasitoid wasp, A.asychis, are examined. Survival results of A.asychis reveal that females show higher thermal tolerance than males. Under short-term high-temperature exposure, in females, the expression levels of most antioxidant enzyme genes decreased first and then increased to a peak at 41 °C, while only the expression of AasyGST4 showed a continuous increase. In males, the expression patterns of most antioxidant enzyme genes fluctuated and reached a maximum at 41 °C. Moreover, the expression levels of the majority of antioxidant enzyme genes were higher in females than in males. In addition, at temperatures of and above 35 °C, the activities of these four antioxidant enzymes were induced. The results show that the antioxidant enzymes confer thermo-tolerance to A. asychis against lethal thermal stress. Our observations enrich the understanding of the response mechanism to high-temperature assaults of A. asychis.