Cargando…
NKG2C+ NK Cells for Immunotherapy of Glioblastoma Multiforme
In glioblastoma, non-classical human leucocyte antigen E (HLA-E) and HLA-G are frequently overexpressed. HLA-E loaded with peptides derived from HLA class I and from HLA-G contributes to inhibition of natural killer (NK) cells with expression of the inhibitory receptor CD94/NKG2A. We investigated wh...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148069/ https://www.ncbi.nlm.nih.gov/pubmed/35628668 http://dx.doi.org/10.3390/ijms23105857 |
Sumario: | In glioblastoma, non-classical human leucocyte antigen E (HLA-E) and HLA-G are frequently overexpressed. HLA-E loaded with peptides derived from HLA class I and from HLA-G contributes to inhibition of natural killer (NK) cells with expression of the inhibitory receptor CD94/NKG2A. We investigated whether NK cells expressing the activating CD94/NKG2C receptor counterpart were able to exert anti-glioma effects. NKG2C+ subsets were preferentially expanded by a feeder cell line engineered to express an artificial disulfide-stabilized trimeric HLA-E ligand (HLA-E*spG). NK cells expanded by a feeder cell line, which facilitates outgrowth of conventional NKG2A+, and fresh NK cells, were included for comparison. Expansion via the HLA-E*spG feeder cells selectively increased the fraction of NKG2C+ NK cells, which displayed a higher frequency of KIR2DL2/L3/S2 and CD16 when compared to expanded NKG2A+ NK cells. NKG2C+ NK cells exhibited increased cytotoxicity against K562 and KIR:HLA-matched and -mismatched primary glioblastoma multiforme (GBM) cells when compared to NKG2A+ NK cells and corresponding fresh NK cells. Cytotoxic responses of NKG2C+ NK cells were even more pronounced when utilizing target cells engineered with HLA-E*spG. These findings support the notion that NKG2C+ NK cells have potential therapeutic value for treating gliomas. |
---|