Cargando…

An Experimental Design Approach to Quantitative Expression for Quality Control of a Multicomponent Antidiabetic Formulation by the HILIC Method

A rapid and reproducible hydrophilic liquid chromatography (HILIC) process was established for concomitant determination of remogliflozin etabonate (RE), vildagliptin (VD), and metformin (MF) in a formulation. A face-centered central composite experimental design was employed to optimize and predict...

Descripción completa

Detalles Bibliográficos
Autores principales: Attimarad, Mahesh, Venugopala, Katharigatta Narayanaswamy, Chohan, Muhammad S., David, Marysheela, Molina, Efren II Plaza, Sreeharsha, Nagaraja, Nair, Anroop Balachandran, Tratrat, Christophe, Altaysan, Abdulrahman Ibrahim, Balgoname, Abdulmalek Ahmed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148089/
https://www.ncbi.nlm.nih.gov/pubmed/35630608
http://dx.doi.org/10.3390/molecules27103135
Descripción
Sumario:A rapid and reproducible hydrophilic liquid chromatography (HILIC) process was established for concomitant determination of remogliflozin etabonate (RE), vildagliptin (VD), and metformin (MF) in a formulation. A face-centered central composite experimental design was employed to optimize and predict the chromatographic condition by statistically studying the surface response model and design space with desirability close to one. A HILIC column with a simple mobile phase of acetonitrile (65% v/v) and 20 mM phosphate buffer (35% v/v, pH 6, controlled with orthophosphoric acid) was used to separate RE, VD, and MF. RE, VD, and MF were separated in 3.6 min using an isocratic mode mobile phase flow at a flow rate of 1.4 mL at room temperature, and the analytes were examined by recording the absorption at 210 nm. The developed HILIC method was thoroughly validated for all parameters recommended by ICH, and linearity was observed in the ranges 20–150 µg/mL, 10–75 µg/mL, and 50–750 µg/mL for RE, VD, and MF, respectively, along with excellent regression coefficients (r(2) > 0.999). The calculated percentage relative deviation and relative error ascertained the precision and accuracy of the method. The selectivity and accuracy were further confirmed by the high percentage recovery of added standard drugs to the formulation using the standard addition technique. The robustness of the HILIC processes was confirmed by developing a half-normal probability plot and Pareto chart, as the slight variation of a single factor had no significant influence on the assay outcomes. Utilization of the optimized HILIC procedure for concurrent quantification of RE, VD, and MF in solid dosage forms showed accurate and reproducible results. Hence, the fast HILIC method can be regularly employed for the quality assurance of pharmaceutical preparations comprising RE, VD, and MF.