Cargando…
Machine Learning Approach to Support the Detection of Parkinson’s Disease in IMU-Based Gait Analysis
The aim of this study was to determine which supervised machine learning (ML) algorithm can most accurately classify people with Parkinson’s disease (pwPD) from speed-matched healthy subjects (HS) based on a selected minimum set of IMU-derived gait features. Twenty-two gait features were extrapolate...
Autores principales: | Trabassi, Dante, Serrao, Mariano, Varrecchia, Tiwana, Ranavolo, Alberto, Coppola, Gianluca, De Icco, Roberto, Tassorelli, Cristina, Castiglia, Stefano Filippo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148133/ https://www.ncbi.nlm.nih.gov/pubmed/35632109 http://dx.doi.org/10.3390/s22103700 |
Ejemplares similares
-
Ability of a Set of Trunk Inertial Indexes of Gait to Identify Gait Instability and Recurrent Fallers in Parkinson’s Disease
por: Castiglia, Stefano Filippo, et al.
Publicado: (2021) -
Multiscale Entropy Algorithms to Analyze Complexity and Variability of Trunk Accelerations Time Series in Subjects with Parkinson’s Disease
por: Castiglia, Stefano Filippo, et al.
Publicado: (2023) -
An artificial neural network approach to detect presence and severity of Parkinson’s disease via gait parameters
por: Varrecchia, Tiwana, et al.
Publicado: (2021) -
Characterizing the Gait of People With Different Types of Amputation and Prosthetic Components Through Multimodal Measurements: A Methodological Perspective
por: De Marchis, Cristiano, et al.
Publicado: (2022) -
Gait Patterns in Patients with Hereditary Spastic Paraparesis
por: Serrao, Mariano, et al.
Publicado: (2016)