Cargando…
Sleep Stage Classification Based on Multi-Centers: Comparison Between Different Ages, Mental Health Conditions and Acquisition Devices
PURPOSE: To investigate the general sleep stage classification performance of deep learning networks, three datasets, across different age groups, mental health conditions, and acquisition devices, comprising adults (SHHS) and children without mental health conditions (CCSHS), and subjects with ment...
Autores principales: | Xu, Ziliang, Zhu, Yuanqiang, Zhao, Hongliang, Guo, Fan, Wang, Huaning, Zheng, Minwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148176/ https://www.ncbi.nlm.nih.gov/pubmed/35637772 http://dx.doi.org/10.2147/NSS.S355702 |
Ejemplares similares
-
Sleep Stage Classification Using Time-Frequency Spectra From Consecutive Multi-Time Points
por: Xu, Ziliang, et al.
Publicado: (2020) -
Association of Objective Sleep Characteristics and Incident Angina Pectoris: A Longitudinal Analysis from the Sleep Heart Health Study
por: Liu, Jiali, et al.
Publicado: (2023) -
The Construction of a Risk Prediction Model Based on Neural Network for Pre-operative Acute Ischemic Stroke in Acute Type A Aortic Dissection Patients
por: Zhao, Hongliang, et al.
Publicado: (2021) -
Functional Connectivity Combined With a Machine Learning Algorithm Can Classify High-Risk First-Degree Relatives of Patients With Schizophrenia and Identify Correlates of Cognitive Impairments
por: Liu, Wenming, et al.
Publicado: (2020) -
Multi-stage sleep classification using photoplethysmographic sensor
por: Motin, Mohammod Abdul, et al.
Publicado: (2023)