Cargando…
A New Model of Discrete-Continuous Bivariate Distribution with Applications to Medical Data
The bivariate Poisson exponential-exponential distribution is an important lifetime distribution in medical data analysis. In this article, the conditionals, probability mass function (pmf), Poisson exponential and probability density function (pdf), and exponential distribution are used for creatin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148234/ https://www.ncbi.nlm.nih.gov/pubmed/35637848 http://dx.doi.org/10.1155/2022/1883491 |
Sumario: | The bivariate Poisson exponential-exponential distribution is an important lifetime distribution in medical data analysis. In this article, the conditionals, probability mass function (pmf), Poisson exponential and probability density function (pdf), and exponential distribution are used for creating bivariate distribution which is called bivariate Poisson exponential-exponential conditional (BPEEC) distribution. Some properties of the BPEEC model are obtained such as the normalized constant, conditional densities, regression functions, and product moment. Moreover, the maximum likelihood and pseudolikelihood methods are used to estimate the BPEEC parameters based on complete data. Finally, two data sets of real bivariate data are analyzed to compare the methods of estimation. In addition, a comparison between the BPEEC model with the bivariate exponential conditionals (BEC) and bivariate Poisson exponential conditionals (BPEC) is considered. |
---|