Cargando…
ID-Seg: an infant deep learning-based segmentation framework to improve limbic structure estimates
Infant brain magnetic resonance imaging (MRI) is a promising approach for studying early neurodevelopment. However, segmenting small regions such as limbic structures is challenging due to their low inter-regional contrast and high curvature. MRI studies of the adult brain have successfully applied...
Autores principales: | Wang, Yun, Haghpanah, Fateme Sadat, Zhang, Xuzhe, Santamaria, Katie, da Costa Aguiar Alves, Gabriela Koch, Bruno, Elizabeth, Aw, Natalie, Maddocks, Alexis, Duarte, Cristiane S., Monk, Catherine, Laine, Andrew, Posner, Jonathan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148335/ https://www.ncbi.nlm.nih.gov/pubmed/35633447 http://dx.doi.org/10.1186/s40708-022-00161-9 |
Ejemplares similares
-
SM-SegNet: A Lightweight Squeeze M-SegNet for Tissue Segmentation in Brain MRI Scans
por: Yamanakkanavar, Nagaraj, et al.
Publicado: (2022) -
Retinal Vessel Automatic Segmentation Using SegNet
por: Xu, Xiaomei, et al.
Publicado: (2022) -
NuSegDA: Domain adaptation for nuclei segmentation
por: Haq, Mohammad Minhazul, et al.
Publicado: (2023) -
SEG: Segmentation Evaluation in absence of Ground truth labels
por: Sims, Zachary, et al.
Publicado: (2023) -
SegAnnDB: interactive Web-based genomic segmentation
por: Hocking, Toby D., et al.
Publicado: (2014)