Cargando…
Design of an artificial neural network to predict mortality among COVID-19 patients
INTRODUCTION: The fast pandemic of coronavirus disease 2019 (COVID-19) has challenged clinicians with many uncertainties and ambiguities regarding disease outcomes and complications. To deal with these uncertainties, our study aimed to develop and evaluate several artificial neural networks (ANNs) t...
Autores principales: | Shanbehzadeh, Mostafa, Nopour, Raoof, Kazemi-Arpanahi, Hadi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148440/ https://www.ncbi.nlm.nih.gov/pubmed/35664686 http://dx.doi.org/10.1016/j.imu.2022.100983 |
Ejemplares similares
-
Developing an artificial neural network for detecting COVID-19 disease
por: Shanbehzadeh, Mostafa, et al.
Publicado: (2022) -
Predicting intubation risk among COVID-19 hospitalized patients using artificial neural networks
por: Nopour, Raoof, et al.
Publicado: (2023) -
Predicting the Need for Intubation among COVID-19 Patients Using Machine Learning Algorithms: A Single-Center Study
por: Nopour, Raoof, et al.
Publicado: (2022) -
Using decision tree algorithms for estimating ICU admission of COVID-19 patients
por: Shanbehzadeh, Mostafa, et al.
Publicado: (2022) -
Performance evaluation of selected decision tree algorithms for COVID-19 diagnosis using routine clinical data
por: Shanbehzadeh, Mostafa, et al.
Publicado: (2021)