Cargando…

Lutein levels in arterial cord blood correlate with neurotrophic calcium binding S100B protein in healthy preterm and term newborns

BACKGROUND: S100B is an established biomarker of brain development and damage. Lutein (LT) is a naturally occurring xanthophyll carotenoid mainly concentrated in the central nervous system (CNS), but its neurotrophic role is still debated. We investigated whether LT cord blood concentrations correla...

Descripción completa

Detalles Bibliográficos
Autores principales: Picone, Simonetta, Ritieni, Alberto, Graziani, Giulia, Paolillo, Piermichele, D’Adamo, Ebe, Botondi, Valentina, Panichi, Daniele, Torresi, Sara, David, Daniela, di Ludovico, Armando, Chiarelli, Francesco, Gazzolo, Diego
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148452/
https://www.ncbi.nlm.nih.gov/pubmed/35643585
http://dx.doi.org/10.1186/s13052-022-01276-9
Descripción
Sumario:BACKGROUND: S100B is an established biomarker of brain development and damage. Lutein (LT) is a naturally occurring xanthophyll carotenoid mainly concentrated in the central nervous system (CNS), but its neurotrophic role is still debated. We investigated whether LT cord blood concentrations correlate with S100B in a cohort of preterm and term healthy newborns. METHODS: We conducted a prospective study on the distribution of LT and S100B in arterial cord blood of healthy preterm (n = 50) and term (n = 50) newborns. RESULTS: S100B and LT showed a pattern of concentration characterized by higher levels (P < 0.01, for all) at 33-36 weeks gestation (GA) followed by a progressive decrease (P < 0.01, for all) from 37 onwards with a dip at term. Both S100B and LT were gender-dependent with significantly (P < 0.01, for all) higher levels in females in preterm and term groups. S100B (R = 0.68; P < 0.001) and LT (R = 0.40; P = 0.005) correlated with GA at sampling. A positive significant correlation (R = 0.87; P < 0.001) between S100B and LT was found. CONCLUSIONS: The present data showing a correlation between S100B and LT supports the notion of a LT trophic role in the CNS. Further investigations in high-risk infants are needed to elucidate LT involvement in the pathophysiological cascade of events leading to CNS development and damage.