Cargando…
Automatic lesion segmentation using atrous convolutional deep neural networks in dermoscopic skin cancer images
BACKGROUND: Melanoma is the most dangerous and aggressive form among skin cancers, exhibiting a high mortality rate worldwide. Biopsy and histopathological analysis are standard procedures for skin cancer detection and prevention in clinical settings. A significant step in the diagnosis process is t...
Autores principales: | Kaur, Ranpreet, GholamHosseini, Hamid, Sinha, Roopak, Lindén, Maria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148511/ https://www.ncbi.nlm.nih.gov/pubmed/35644612 http://dx.doi.org/10.1186/s12880-022-00829-y |
Ejemplares similares
-
Melanoma Classification Using a Novel Deep Convolutional Neural Network with Dermoscopic Images
por: Kaur, Ranpreet, et al.
Publicado: (2022) -
Skin Lesion Segmentation from Dermoscopic Images Using Convolutional Neural Network
por: Zafar, Kashan, et al.
Publicado: (2020) -
Atrous residual convolutional neural network based on U-Net for retinal vessel segmentation
por: Wu, Jin, et al.
Publicado: (2022) -
Fast semantic segmentation method for machine vision inspection based on a fewer-parameters atrous convolution neural network
por: Huang, Jian, et al.
Publicado: (2021) -
Skin lesion classification of dermoscopic images using machine learning and convolutional neural network
por: Shetty, Bhuvaneshwari, et al.
Publicado: (2022)