Cargando…
Machine learning approach for anxiety and sleep disorders analysis during COVID-19 lockdown
The Severe Acute Respiratory Syndrome (SARS)-CoV-2 virus caused COVID-19 pandemic has led to various kinds of anxiety and stress in different strata and sections of the society. The aim of this study is to analyse the sleeping and anxiety disorder for a wide distribution of people of different ages...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148681/ https://www.ncbi.nlm.nih.gov/pubmed/35669293 http://dx.doi.org/10.1007/s12553-022-00674-7 |
Sumario: | The Severe Acute Respiratory Syndrome (SARS)-CoV-2 virus caused COVID-19 pandemic has led to various kinds of anxiety and stress in different strata and sections of the society. The aim of this study is to analyse the sleeping and anxiety disorder for a wide distribution of people of different ages and from different strata of life. The study also seeks to investigate the different symptoms and grievances that people suffer from in connection with their sleep patterns and predict the possible relationships and factors in association with outcomes related to COVID-19 pandemic induced stress and issues. A total of 740 participants (51.3% male and 48.7% female) structured with 2 sections, first with general demographic information and second with more targeted questions for each demographic were surveyed. Pittsburgh Sleep Quality Index (PSQI) and General Anxiety Disorder assessment (GAD-7) standard scales were utilized to measure the stress, sleep disorders and anxiety. Experimental results showed positive correlation between PSQI and GAD-7 scores for the participants. After adjusting for age and gender, occupation does not have an effect on sleep quality (PSQI), but it does have an effect on anxiety (GAD-7). Student community in spite of less susceptible to COVID-19 infection found to be highly prone to psychopathy mental health disturbances during the COVID-19 pandemic. The study also highlights the connectivity between lower social status and mental health issues. Random Forest model for college students indicates clearly the stress induced factors as anxiety score, worry about inability to understand concepts taught online, involvement of parents, college hours, worrying about other work load and deadlines for the young students studying in Universities. |
---|