Cargando…

Chemerin is secreted by the chicken oviduct, accumulates in egg albumen and could promote embryo development

Understanding of the distribution of chemerin and its receptors, Chemokine-like Receptor 1 (CMKLR1), G Protein-coupled Receptor 1 (GPR1) and Chemokine (C–C motif) receptor-like 2 (CCRL2), in the egg and the embryonic annexes is currently lacking, and their role during embryogenesis remains unknown....

Descripción completa

Detalles Bibliográficos
Autores principales: Estienne, Anthony, Brossaud, Adeline, Ramé, Christelle, Bernardi, Ophélie, Reverchon, Maxime, Rat, Christophe, Delaveau, Joël, Chambellon, Emilie, Helloin, Emmanuelle, Froment, Pascal, Dupont, Joëlle
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148909/
https://www.ncbi.nlm.nih.gov/pubmed/35644891
http://dx.doi.org/10.1038/s41598-022-12961-4
Descripción
Sumario:Understanding of the distribution of chemerin and its receptors, Chemokine-like Receptor 1 (CMKLR1), G Protein-coupled Receptor 1 (GPR1) and Chemokine (C–C motif) receptor-like 2 (CCRL2), in the egg and the embryonic annexes is currently lacking, and their role during embryogenesis remains unknown. By immunoblot using monoclonal anti-chicken antibodies and Enzyme Linked Immunosorbent Assays (ELISA), we found that chemerin is expressed 10 times higher in albumen eggs than in blood plasma, and it is also abundant in the perivitelline membrane but undetectable in yolk. Chicken chemerin can inhibit bacterial growth. By Reverse Transcription—quantitative Polymerisation Chain Reaction (RT-qPCR), western-blot, and immunofluorescence, we show that chemerin is locally produced by the oviduct magnum that participates in albumen formation. Using cultures of magnum explants, we demonstrate that progesterone (P4) and oestradiol (E2) treatment increases chemerin secretion into cultured media and expression in magnum. Chemerin and its three receptors are present in amniotic and Chorio Allantoic Membranes (CAM). Only CMKLR1 expression decreased from embryonic day (ED) 7 to ED11 and remained low until ED18. Chemerin concentrations strongly increased in amniotic fluid at D14 when egg albumen crossed the amniotic membrane. In ovo injections of neutralising chemerin and CMKLR1 antibodies (0.01, 0.1 and 1 µg) increased embryo mortality, which occurred mainly at ED12-13, in a dose-dependent manner. Chemerin treatment increased primary CAM viability. Finally, chemerin and CMKLR1 inhibition within the CAM led to a decrease in blood vessel development and associated angiogenic gene expression. Our results show an important function of the chemerin system during embryo development in chickens, suggesting the potential use of this adipokine as a predictive marker for egg fertility or hatchability.